Examples



mdbootstrap.com



 
Статья
2020

Synthesis of 6-Mercaptohexanoylhydrazones of Mono- and Disaccharides as a Potential Glycoligands of Noble Metal Glyconanoparticles


A. Yu. ЕrshovA. Yu. Еrshov, А. А. МаrtynenkovА. А. Маrtynenkov, I. V. LagodaI. V. Lagoda, А. V. YakimanskyА. V. Yakimansky
Российский журнал общей химии
https://doi.org/10.1134/S1070363220100084
Abstract / Full Text

The 1H and 13C NMR spectroscopy was used to study the structure of previously unknown aldose series condensation products (L-fucose, L-rhamnose, D-mannose, D-galactose, D-glucose, N-acetyl-D-glucosamine, N-acetyl-D-mannosamine, D-lactose and D-maltose) with 6-mercapto­hexanoic acid hydrazide—promising glycoligands of noble metal nanoparticles. It was shown that L-fucose, L-rhamnose, D-mannose, D-galactose and N-acetyl-D-mannosamine derivatives exist in solution in DMSO-d6 as a tautomeric mixture of open hydrazone and cyclic pyranose forms. The linear hydrazone form is represented by a set of Z′,E′-conformational isomers, which differ in the arrangement of substituents relative to the C–N amide bond in comparable amounts. The condensation products obtained on the basis of D-glucose, N-acetyl-D-glucosamine, D-lactose and D-maltose in the crystalline state and in solutions in DMSO-d6 have an exclusively cyclic pyranose structure represented by α,β-configurational isomers. A similar transition to the pyranose form is observed in solutions of all the studied compounds in D2O.

Author information
  • Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004, St. Petersburg, RussiaA. Yu. Еrshov, А. А. Маrtynenkov & А. V. Yakimansky
  • State Research Testing Institute of Military Medicine, Ministry of Defense of the Russian Federation, 195043, St. Petersburg, RussiaI. V. Lagoda
  • St. Petersburg State University, 199034, St. Petersburg, RussiaА. V. Yakimansky
References
  1. Kang, B., Opatz, T., Landfester, K., and Wurm, F.R., Chem. Soc. Rev., 2015, vol. 44, p. 8301. https://doi.org/10.1039/C5CS00092K
  2. Carbohydrate Nanotechnology, Stine, K.J., Ed., New Jersey: John Wiley & Sons, 2016, 470 p. https://doi.org/10.1002/9781118860212.ch3
  3. Glycochemical Synthesis: Strategies and Applications, Hung, S.-C. and Zulueta, M.M.L., Eds., New Jersey: John Wiley & Sons, Inc., 2016. https://doi.org/10.1002/9781119006435.ch16
  4. Engineered Carbohydrate-Based Materials for Biomedical Applications: Polymers, Surfaces, Dendrimers, Nanoparticles, and Hydrogels, Narain, R., Ed., New Jersey: John Wiley & Sons, 2011. https://doi.org/10.1002/9780470944349.ch6
  5. Carbohydrate, Caliskan, M., Kavakli, I.H., and Oz, G.C., Eds., Istanbul: InTech Publisher, 2017. https://doi.org/10.5772/66194
  6. Nanobiomaterials in Cancer Therapy: Applications of Nanobiomaterials, Grumezescu, A., Ed., Oxford: Elsevier Science Publishing Co Inc., 2016. https://doi.org/10.1016/B978-0-323-42863-7.00002-5
  7. Fedotcheva, T.A., Olenin, A.Yu., Starostin, K.M., Lisichkin, G.V., Banin, V.V., and Shimanovskii, N.L., Pharm. Chem. J., 2015, vol. 49, no. 4, p. 220. https://doi.org/10.1007/s11094-015-1260-6
  8. Marin, M.J., Schofield, C.L., Field, R.A., and Russell, D.A., Analyst, 2015, vol. 140, p. 59. https://doi.org/10.1039/C4AN01466A
  9. de la Fuente, J.M. and Penades, S., Biochim. Biophys. Acta, 2006, vol. 1760, no. 4, p. 636. https://doi.org/10.1016/j.bbagen.2005.12.001
  10. Barrientos, A.G., de la Fuente, J.M., Rojas, T.C., Fernandez, A., and Penades, S., Chem. Eur. J., 2003, vol. 9, no. 9, p. 1909. https://doi.org/10.1002/CHEM.200204544
  11. Vetro, M., Safari, D., Fallarini, S., Salsabila, K., Lahmann, M., Penades, S., Lay, L., Marradi, M., and Compostella, F., Nanomedicine, 2017, vol. 12, no. 1, p. 13. https://doi.org/10.2217/nnm-2016-0306
  12. Bogart, L.K., Pourroy, G., Murphy, C.J., Puntes, V., Pellegrino, T., Rosenblum, D., Peer, D., and Lévy, R., ACS Nano, 2014, vol. 8, no. 4, p. 3107. https://doi.org/10.1021/nn500962q
  13. Jazayeri, M.H., Amani, H., Pourfatollah, A.A., Avan, A., Ferns, G.A., and Pazoki-Toroudi, H., Cancer Gene Therapy, 2016, vol. 23, p. 365. https://doi.org/10.1038/cgt.2016.42
  14. Veerapandian, M., Lim, S.K., Nam, H.M., Kuppannan, G., and Yun, K.S., Analyt. Bioanalyt. Chem., 2010, vol. 398, p. 867. https://doi.org/10.1007/s00216-010-3964-5.virus
  15. Ershov, A.Yu., Vasileva, M.Yu., Lagoda, I.V., and Yakimansky, A.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 6, p. 1199. https://doi.org/10.1134/S1070363218060245
  16. Ershov, A.Y., Vasileva, M.Y., Levit, M.L., Lagoda, I.V., Baygildin, V.A., Shabsels, B.M., Martynenkov, A.A., and Yakimansky, A.V., Russ. J. Gen. Chem., 2019, vol. 89, no. 2, p. 300. https://doi.org/10.1134/S0044460X19020215
  17. Vasileva, M.Yu., Ershov, A.Yu., Baygildin, V.A., Lagoda, I.V., Kuleshova, L.Yu., Shtro, A.A., Zarubaev, V.V., and Yakimansky, A.V., Russ. J. Gen. Chem., 2018, vol. 88, no. 1, p. 109. https://doi.org/10.1134/S1070363218010176
  18. Ershov, A.Y., Martynenkov, A.A., Lagoda, I.V., Kopanitsa, M.A., and Yakimansky, A.V., Chem. Select., 2019, vol. 44, p. 12938. https://doi.org/10.1002/slct.201902942
  19. von Delius, M., Geertsema, E.M., and Leigh, D.A., Nat. Chem., 2010, vol. 2, no. 2, p. 96. https://doi.org/10.1038/nchem.481
  20. Ershov, A.Yu., Lagoda, I.V., Yakimovich, S.I., Zerova, I.V., Pakal′nis, V.V., and Shamanin, V.V., Russ. J. Org. Chem., 2009, vol. 45, no. 10, p. 1488. https://doi.org/10.1134/S107042800910011X
  21. Sonawane, S.J., Kalhapure, R.S., and Govender, T., Eur. J. Pharm. Sci., 2017, vol. 99, no. 1, p. 45. https://doi.org/10.1016/j.ejps.2016.12.011