Examples



mdbootstrap.com



 
Статья
2021

Cyclic hybrid compounds based on 1,3- and 1,5-dichlorosiloxanes and 2,2′-dihydroxyazobenzene


A. S. SoldatenkoA. S. Soldatenko, N. F. LazarevaN. F. Lazareva
Российский химический вестник
https://doi.org/10.1007/s11172-021-3071-0
Abstract / Full Text

The first representatives of cyclic azobenzene-siloxane hybrid compounds, namely, 2,4-dimethyl-2,4-diorganyl-1,3,5-trioxa-8,9-diaza-2,4-disiladibenzo[f,j]cycloundecanes and 6,6,8,8,10,10-hexamethyl-1,3,5,7-tetraoxa-10,11-diaza-2,4,6-trisiladibenzo[h,l]cyclotridecane, were synthesized.

Author information
  • A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 ul. Favorskogo, 664033, Irkutsk, Russian FederationA. S. Soldatenko & N. F. Lazareva
References
  1. K. Tsuru, Y. Shirosaki, S. Hayakawa, A. Osaka, Biol. Pharm. Bull., 2013, 36, 1683; DOI https://doi.org/10.1248/bpb.b13-00526.
  2. R. Hidayat, W. Gomulya, P. Pitriana, R. Irmansyah, R. Miranti, Herman, S. Hidayat, Fitrilawati, A. Fujii, M. Ozaki, ITB J. Eng. Sci., 2012, 44, 207; DOI: https://doi.org/10.5614/itbj.eng.sci.2012.44.3.1.
  3. S. S. Silva, R. A. S. Ferreira, L. Fu, L. D. Carlos, J. F. Mano, R. L. Reisa, J. Rocha, J. Mater. Chem., 2005, 15, 3952; DOI: https://doi.org/10.1039/b505875a.
  4. A. Chemtob, L. Ni, C. Croutxé-Barghorn, B. Boury, Chem. Eur. J., 2014, 20, 1790; DOI: https://doi.org/10.1002/chem.201303070.
  5. K. Naka, Y. Irie, Polym. Int., 2017, 66, 187; DOI: https://doi.org/10.1002/pi.5121.
  6. T. Guanji, S. Itagaki, T. Kajiwara, Y. Abe, T. Hatakeyama, R. Aoki, Polymer J., 2009, 41, 541; DOI: https://doi.org/10.1295/polymj.PJ2008290.
  7. C. Samchez, B. Lebeau, F. Ribot, M. In, J. Sol-Gel Sci. Technol., 2000, 19, 31; DOI: https://doi.org/10.1023/A:1008753919925.
  8. A. Shimojima, K. Kuroda, Chem. Rec., 2006, 6, 53; DOI: https://doi.org/10.1002/tcr.20073.
  9. H. M. Dhammika Bandara, S. C. Burdette, Chem. Soc. Rev., 2012, 41, 1809; DOI: https://doi.org/10.1039/c1cs15179g.
  10. E. Merino, M. Ribagorda, Beilst. J. Org. Chem., 2012, 8, 1071; DOI:https://doi.org/10.3762/bjoc.8.119.
  11. S. Guo, W. Chaikittisilp, T. Okubo, A. Shimojima, RSC Adv., 2014, 4, 25319; DOI: https://doi.org/10.1039/c4ra01709a.
  12. R. H. Zha, G. Vantomme, J. A. Berrocal, R. Gosens, B. de Waal, S. Meskers, E. W. Meijer, Adv. Funct. Mater., 2018, 28, 1703952; DOI: https://doi.org/10.1002/adfm.201703952.
  13. K. Feng, S. Li, L. Fenga, S. Feng, New J. Chem., 2017, 41, 14498; DOI: https://doi.org/10.1039/C7NJ03177G.
  14. M. Dowds, D. Bank, J. Strueben, D. P. Soto, F. D. Sönnichsen, F. Renth, F. Temps, A. Staubitz, J. Mater. Chem. C, 2020, 8, 1835; DOI: https://doi.org/10.1039/C9TC05193G.
  15. S. Guo, J. Sasaki, S. Tsujiuchi, S. Hara, H. Wada, K. Kuroda, A. Shimojima, Chem. Lett., 2017, 46, 1237; DOI: https://doi.org/10.1246/cl.170468.
  16. S. Guo, K. Matsukawa, T. Miyata, T. Okubo, K. Kuroda, A. Shimojima, J. Am. Chem. Soc., 2015, 137, 15434; DOI: https://doi.org/10.1021/jacs.5b06172.
  17. M. Jun, D. K. Joshi, R. S. Yalagala, J. Vanloon, R. Simionescu, A. J. Lough, H. L. Gordon, H. Yan, Chem. Select., 2018, 3, 2697; DOI: https://doi.org/10.1002/slct.201703126.
  18. S. Poyer, C. Comby-Zerbino, C. M. Choi, L. Aleese, C. Deo, N. Bogliotti, J. Xie, J.-Y. Salpin, P. Dugourd, F. Chirot, Anal. Chem., 2017, 89, 4230; DOI: https://doi.org/10.1021/acs.analchem.7b00281.
  19. A. Adam, S. Mehrparvar, G. Haberhauer, Beilstein J. Org. Chem., 2019, 15, 1534; DOI: https://doi.org/10.3762/bjoc.15.156.
  20. S. Li, N. Eleya, A. Staubitz, Org. Lett., 2020, 22, 1624; DOI: https://doi.org/10.1021/acs.orglett.0c00122.
  21. M. Saha, S. Ghosh, S. Bandyopadhyay, New J. Chem., 2018, 42, 10784; DOI: https://doi.org/10.1039/c8nj01643g.
  22. N. Preußke, W. Moormann, K. Bamberg, M. Lipfert, R. Herges, F. D. Sönnichsen, Org. Biomol. Chem., 2020, 18, 2650; DOI: https://doi.org/10.1039/c9ob02442e.
  23. C. Deo, N. Bogliotti, R. Métivier, P. Retailleau, J. Xie, Chem. Eur. J., 2016, 22, 9092; DOI: https://doi.org/10.1002/chem.201601400.
  24. W.-C. Geng, H. Sun, D.-S. Guo, J. Incl. Phen.&Macrocyclic Chem., 2018, 92, 1; DOI: https://doi.org/10.1007/s10847-018-0819-8.
  25. A. Skwierawska, E. Luboch, J. F. Biernat, V. Ch. Kravtsov, Yu. A. Simonov, A. A. Dvorkin, V. K. Bel’skii, J. Incl. Phen.&Mol. Rec. Chem., 1998, 31, 71; DOI: https://doi.org/10.1023/A:1007945901754.
  26. A. Adam, G. Haberhauer, J. Am. Chem. Soc., 2017, 139, 9708; DOI: https://doi.org/10.1021/jacs.7b05316.
  27. K. Takaishi, M. Kawamoto, Molecules, 2011, 16, 1603; DOI: https://doi.org/10.3390/molecules16021603.
  28. Yu. S. Vysochinskaya, A. A. Anisimov, A. S. Peregudov, A. S. Dubovik, V. N. Orlov, Yu. N. Malakhova, A. A. Stupnikov, M. I. Buzin, G. G. Nikiforova, V. G. Vasil’ev, O. I. Shchegolikhina, A. M. Muzafarov, J. Polym. Sci.: Polym. Chem., 2019, 57, 1233; DOI: https://doi.org/10.1002/pola.29380.
  29. A. A. Anisimov, Yu. S. Visochinskaya, M. I. Buzin, V. G. Vasil’ev, G. G. Nikiforova, A. S. Peregudov, A. S. Dubovik, V. N. Orlov, O. I. Shchegolikhina, A. M. Muzafarov, Russ. Chem. Bull., 2019, 68, 1275; DOI: https://doi.org/10.1007/s11172-019-2553-9.
  30. Y. Ecochard, J. Leroux, B. Boutevin, R. Auvergne, S. Caillol, Eur. Polym. J., 2019, 120, 109280; DOI: https://doi.org/10.1016/j.eurpolymj.2019.109280.
  31. K. Kakiage, M. Yamamura, T. Kyomen, M. Unno, M. Hanaya, Key Eng. Mater., 2012, 497, 61; DOI: https://doi.org/10.4028/www.scientific.net/KEM.497.61.
  32. N. Kano, F. Komatsu, M. Yamamura, T. Kawashima, J. Am. Chem. Soc., 2006, 128, 7097; DOI: https://doi.org/10.1021/ja060926s.
  33. N. Kano, F. Komatsu, T. Kawashima, J. Am. Chem. Soc., 2001, 123, 10778; DOI: https://doi.org/10.1021/ja0165739.
  34. T. A. Su, H. Li, R. S. Klausen, N. T. Kim, M. Neupane, J. L. Leighton, M. L. Steigerwald, L. Venkataraman, C. Nuckolls, Acc. Chem. Res., 2017, 50, 1088; DOI: https://doi.org/10.1021/acs.accounts.7b00059.
  35. M. Natali, S. Giordani, Chem. Soc. Rev., 2012, 41, 4010; DOI: https://doi.org/10.1039/c2cs35015g.
  36. A. Blanco-Gomez, P. Corton, L. Barravecchia, I. Neira, E. Pazos, C. Peinador, M. D. Garcıa, Chem. Soc. Rev., 2020, 49, 3834; DOI: https://doi.org/10.1039/d0cs00109k.
  37. A. S. Soldatenko, I. V. Sterkhova, N. F. Lazareva, J. Organometal. Chem., 2019, 903, 120997; DOI: https://doi.org/10.1016/j.jorganchem.2019.120997.
  38. Modern Supramolecular Chemistry. Strategies for Macrocycle Synthesis, Eds F. Diederich, P. J. Stang, R. R. Tykwinski, Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim, 2008, 400 pp.
  39. V. Pestunovich, S. Kirpichenko, M. Voronkov, in The Chemistry of Organic Silicon Compounds, Vol. 2, Eds Z. Rappoport, Y. Apeloig, Wiley, Chichester, UK, 1998, p. 1447.
  40. M. Y. Kishimoto, H. Matsumoto, Organometallics, 2004, 23, 6221; https://doi.org/10.1021/om0494972.
  41. R. K. Harris, B. J. Kimber, M. D. Wood, J. Organometal. Chem., 1976, 116, 291; DOI: https://doi.org/10.1016/S0022-328X(00)94464-4.
  42. T. V. Timofeeva, I. L. Dubchak, V. G. Dashevsky, Yu. T. Struchkov, Polyhedron, 1984, 3, 1109; DOI: https://doi.org/10.1016/S0277-5387(00)88066-3.
  43. I. M. Petrova, N. N. Makarova, A. V. Kaznacheev, T. V. Vlasova, V. M. Men’shov, Russ. Chem. Bull., 2009, 58, 604; DOI: https://doi.org/10.1007/s11172-009-0063-x.
  44. Y. Abe, M. Kaji, K. Arimitsu, K. Suyama, T. Gunji, Silicon Chem., 2002, 1, 367; DOI: https://doi.org/10.1023/B:SILC.0000025577.16378.23.
  45. T. E. Mann, J. Haley, D. Lacey, J. Mater. Chem., 1999, 9, 353; DOI: https://doi.org/10.1039/A807003B.
  46. S. A. Milenin, R. R. Khairova, V. D. Myakushev, A. I. Buzin, V. G. Vasiliev, I. I. Stoikov, A. M. Muzafarov, J. Organometal. Chem., 2018, 870, 110; DOI: https://doi.org/10.1016/j.jorganchem.2018.06.026.
  47. H. T. Stock, R. M. Kellogg, J. Org. Chem., 1996, 61, 3093; DOI: https://doi.org/10.1021/jo952107o.
  48. P. K. Hashim, R. Thomas, N. Tamaoki, Chem. Eur. J., 2011, 17, 7304; DOI: https://doi.org/10.1002/chem.201003526.
  49. J. Lu, A. Xia, N. Zhou, W. Zhang, Z. Zhang, X. Pan, Y. Yang, Y. Wang, X. Zhu, Chem. Eur. J., 2015, 21, 2324; DOI: https://doi.org/10.1002/chem.201405940.
  50. S. A. Nagamani, Y. Norikane, N. Tamaoki, J. Org. Chem., 2005, 70, 9304; DOI: https://doi.org/10.1021/jo0513616.
  51. B. Jousselme, P. Blanchard, M. Allain, E. Levillain, M. Dias, J. Roncali, J. Phys. Chem. A, 2006, 110, 3488; DOI: https://doi.org/10.1021/jp060254s.
  52. K. Takaishi, A. Muranaka, M. Kawamoto, M. Uchiyama, Org. Lett., 2012, 14, 276; DOI: https://doi.org/10.1021/o1203053q.
  53. S. V. Basenko, A. A. Maylyan, A. S. Soldatenko, Silicon, 2018, 10, 465; DOI https://doi.org/10.1007/s12633-016-9474-0.
  54. W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals, 6th ed., Elsevier, 2009, pp. 760.