Regularities of Conductivity of Aqueous Molecular Solutions

V. A. Sevryugin V. A. Sevryugin , V. V. Loskutov V. V. Loskutov , G. N. Kosova G. N. Kosova
Российский электрохимический журнал
Abstract / Full Text

The work presents the results of measurements of specific conductivity in aqueous solutions of low–molecular alcohols: mono-, di-, tri-, and nonaethylene glycols, glycerol, ethanol, sorbitol, and acetone in the full concentration range. It is shown that not only hydroxyl groups should be considered as the donor–active charge carrier centers in the studied systems, but also oxygen atoms, which is illustrated by a linear dependence of the conductivity maximum on the number of hydration centers. A new method of normalization of specific conductivity is suggested that allows extracting the component corresponding to the charge carrier donor.

Author information
  • Kazan Federal University, Institute of Physics, Department of Physics of Molecular Systems, 420008, Kazan, Republic of Tatarstan, Russia

    V. A. Sevryugin

  • Mari State University, Department of Physics and Materials Science, 424000, Yoshkar Ola, Republic of Marii El, Russia

    V. V. Loskutov

  • Volga State University of Technology, Department of Physics, 424000, Yoshkar Ola, Republic of Marii El, Russia

    G. N. Kosova

  1. Yaroslavtsev, A.B., Proton conductivity of inorganic hydrates, Rus. Chem. Rev., 1994, vol. 63, p. 429.
  2. Tarasevich, M.R. and Korchagin, O.V., Rapid diagnostics of characteristics and stability of fuel cells with proton-conducting electrolyte, Russ. J. Electrochem., 2014, vol. 50, p. 737.
  3. Hu, N., Wu, D., Cross, K.J., and Schaefer, D.W., Structural Basis of the 1H-Nuclear Magnetic Resonance Spectra of Ethanol–Water Solutions Based on Multivariate Curve Resolution Analysis of Mid-Infrared Spectra, Appl. Spectrosc., 2010, vol. 64, p. 337.
  4. Volkov, V.I., Sanginov, E.A., Pavlov, A.A., Dobrovol’skii, Yu.A., Rebrov, A.I., Anokhin, E.M., Shestakov, S.L., and Maksimychev, A.V., Mechanism of proton conductivity in polyvinyl alcohol-phenolsulfonic acid membranes from 1H and 13C NMR data, Russ. J. Electrochem., 2009, vol. 45, p. 374.
  5. Sevryugin, V.A., Skirda, V.D., and Skirda, M.V., Exchange processes in aqueous solutions of saccharides, Russ. J. Phys. Chem. A, 1998, vol. 72, p.766.
  6. Billard, R., Cosson, J., Noveiri, S.B., and Pourkazemi, M., Cryopreservation and short-term storage of sturgeon sperm, Aquaculture, 2009, vol. 236, p. 1.
  7. Boryshpolets, S., Dzyuba, B., Rodina, M., Alavi, S.M.H., Gela, D., and Linhart, O., Cryopreservation of sterlet (Acipenser ruthenus) spermatozoa using different cryoprotectants, J. Appl. Ichthyol., 2011, vol. 27, p.1147.
  8. Seki, S., Kouya, T., Tsuchiya, R., Valdez Jr., D.M., Jin, B., Koshimoto, C., Kasai, M., and Edashige, K., Cryobiological properties of immature zebrafish oocytes assessed by their ability to be fertilized and develop into hatching embryos, Cryobiology, 2011, vol. 62, p. 8.
  9. Zachariassen, K.E. and Kristiansen, E., Ice Nucleation and Antinucleation in Nature, Cryobiology, 2000, vol. 41, p. 257.
  10. Oswal, S.L. and Desai, H.S., Studies of viscosity and excess molar volume of binary mixtures: 2. Butylamine+1-alkanol mixtures at 303.15 and 313.15 K, Fluid Phase Equilib., 1999, vol. 161, p. 191.
  11. Chen, C., Li, W., Song, Y., and Yang, J., Molecular dynamics simulation studies of cryoprotective agent solutions: the relation between melting temperature and the ratio of hydrogen bonding acceptor to donor number, Mol. Phys., 2009, vol. 107, p. 673.
  12. Murthy, S.S.N., Experimental Study of the Dynamics of Water and the Phase behavior of the Supercooled Aqueous Solutions of Propylene Glycol, Glycerol, Poly(ethylene glycol)s, and Poly(vinylpyrrolidone), J. Phys. Chem. B, 2000, vol. 104, p. 6955.
  13. Artemkina, Y.M., Shcherbakov, V.V., and Korotkova, E.N., High-frequency conductivity of mixtures of water with methanol, ethanol, and propanol. Russ. J. Electrochem., 2015, vol. 51, p. 180.
  14. Petterson, K.A., Stein, R.S., Drake, M.D., and Roberts, J.D., An NMR investigation of the importance of intramolecular hydrogen bonding in determining the conformational equilibrium of ethylene glycol in solution. Magn. Reson. Chem., 2005, vol. 43, p. 225.
  15. Price, W.S., Ide, H., and Arata, Y., Solution Dynamics in Aqueous Monohydric Alcohol Systems, J. Phys. Chem. A, 2003, vol. 107, p. 4784.
  16. Oldenhof, H., Friedel, K., Sieme, H., Glasmacher, B., and Wolkers, W.F., Membrane permeability parameters for freezing of stallion sperm as determined by Fourier transform infrared spectroscopy, Cryobiology, 2010, vol. 61, p. 115.
  17. Ghosh, B.D. and Ritchie, J.E., Effect of Polymer Structure on Ion Transport in an Anhydrous Proton Conducting Electrolyte, Chem. Mater., 2010, vol. 22, p. 1483.
  18. Sun, C. and Ritchie, J.E., Star-Shaped MePEGn Polymers as H+ Conducting Electrolytes, J. Phys. Chem. B, 2011, vol. 115, p. 8381.
  19. Chang, H.Y. and Lin, C.W., Proton Conducting Membranes Based on PEG/SiO2 Nanocomposites for Direct Methanol Fuel Cells, J. Membr. Sci., 2003, vol. 218, p. 295.
  20. Harris, J.M. and Chess, R.B., Effect of Pegylation on Pharmaceuticals, Nat. Rev. Drug Discov., 2003, vol. 2, p. 214.
  21. Kirillov, A.D., Kakurkin, N.P., and Shcherbakov, V.V., Electroconductivity of the calcium oxide-ethylene glycol–water system, Russ. J. Electrochem., 2007, vol. 43, p. 114.
  22. Tsierkezos, N.G. and Molinou, I.E., Transference Numbers, Conductance and Viscosity Studies of Copper Sulfate in Ethylene Glycol–Water Mixtures at 20°C, Z. Phys. Chem., 2006, vol. 216, p. 961.
  23. Fosbol, P.L., Thomsen, K., and Stenby, E.H., Modeling of the Mixed Solvent Electrolyte System CO2−Na2CO3−NaHCO3−Monoethylene Glycol–Water, Ind. Eng. Chem. Res., 2009, vol. 48, p. 4565.
  24. Capuano, F., Vergara, A., Paduano, L., Annunziata, O., and Sartorio, R., Electrostatic and Excluded Volume Effects on the Transport of Electrolytes in Poly(Ethylene Glycol)–Water Mixed Solvents, J. Phys. Chem. B, 2003, vol. 107, p. 12363.
  25. Chung, J.K. and Consta, S., Release Mechanisms of Poly(Ethylene Glycol) Macroions from Aqueous Charged Nanodroplets. J. Phys. Chem. B, 2012, vol. 116, p. 5777.
  26. Ennari, J., Neelov, I., and Sunholm, F., Modelling of Gas Transport Properties of Polymer Electrolytes Containing Various Amounts of Water, Polymer, 2004, vol. 45, p. 4171.
  27. Sesta, B. and Berardelli, M.L., Alkali-Nitrate Interactions in Water–Ethylene–Glycol Mixtures. Conductometric Measurements at 25°C, Electrochim. Acta, 1972, vol. 17, p. 915.
  28. Nowak-Woźny, D. and Maczka, T., The DC conduction mechanism of Ethylene Glycol Water solutions, J. Electr. Eng., 2007, vol. 58, p. 55.
  29. Erdey-Gruz, T. Transport phenomena in aqueous solutions, Wiley, New York, 1974, p. 30.
  30. Izmailov, N.A., Electrokhimiya rastvorov (Electrochemistry of solutions), Moscow, Khimiya, 1976.
  31. Sevryugin, V.A., Loskutov. V.V., and Kosova, G.N., Regularities of conductivity of aqueous glycerol solutions, Izvestiya UNTs RAN, 2014, no. 3, p. 40.
  32. Davletbaeva, I.M., Emelina, O.Yu., Vorotyntsev, I.V., Davletbaev, R.S., Grebennikova, E.S., Petukhov, A.N., Akhmetshina, A.I., Sazanova, T.S., and Loskutov, V.V., Synthesis and properties of novel polyurethanes based on amino ethers of boric acid for gas separation membranes, RSC Adv., 2015, vol. 5, p. 65674.
  33. Samoilov, O.Ya., Structure of Aqueous Electrolyte Solutions and the Hydration of Ions, Consultants Bureau, New York, 1965.
  34. Sevriugin, V.A., Loskutov, V.V., and Zhuravlyova, N.E., Concentration Dependences of Solvent Self-Diffusion Coefficients in Solutions and Heterogeneous Systems, Appl. Magn. Reson., 2005, vol. 29, p. 523.
  35. Sevryugin, V.A., Azancheev, N.M., and Kosova, G.N., Translational Mobility of Components and Structure of Water–Ethanol Solutions, Appl. Magn. Reson., 2018, vol. 49, p. 357.
  36. Ohtaki, H. and Radnai, T., Structure and Dynamics of Hydrated Ions, Chem. Rev., 1993, vol. 93, p. 1157.