Thermal Polymerization of Styrene Sorbed from the Gas Phase into Polymer Films as a Method for Synthesizing Precursors of Ion-Exchange Membranes

A. N. Ponomarev A. N. Ponomarev , D. A. Kritskaya D. A. Kritskaya , E. F. Abdrashitov E. F. Abdrashitov , V. Ch. Bokun V. Ch. Bokun , E. A. Sanginov E. A. Sanginov , K. S. Novikova K. S. Novikova , Yu. A. Dobrovol’skii Yu. A. Dobrovol’skii
Российский электрохимический журнал
Abstract / Full Text

Abstract—The thermal polymerization of styrene sorbed from the gas-phase into polymer films of polyvinylidene fluoride (PVDF) is carried out at 110°С. By this method, the “matrix‑polystyrene” composites containing up to 70 wt % polystyrene (PS), which serve as precursors of ion-exchange membranes, are synthesized. Sulfonation of grafted PS produces ion-exchange membranes with the exchange capacitance of 1–2.7 mmol/g and the protonic conductivity reaching 20–200 mS/cm when saturated with water at 25°С. The conductivity values indicate that the nonuniformity of PS distribution over film-matrix cross-section usually encountered when monomer sorbed from the gas phase is polymerized does not exert any noticeable effect on the conduction properties of sulfonated composites. The developed method of preparing composites “polymer matrix‑grafted polystyrene” substantially simplifies the synthesis of the precursor of ion-exchange membranes, decreases the necessary amount of reagents, and considerably enhances the safety of synthesis.

Author information
  • Branch of Talrose Institute of Energy Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    A. N. Ponomarev, D. A. Kritskaya, E. F. Abdrashitov & V. Ch. Bokun

  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    A. N. Ponomarev, D. A. Kritskaya, E. A. Sanginov, K. S. Novikova & Yu. A. Dobrovol’skii

  1. Nasef, M.M., Radiation-grafted membranes for polymer electrolyte fuel cells: current trends and future directions, Chem. Rev., 2014, vol. 114, p. 12 278.
  2. Golubenko, D.V. and Yaroslavtsev, A.B., New approach to the preparation of grafted ion exchange membranes based on UV-oxidized polymer films and sulfonated polystyrene, Mendeleev Commun., 2017, vol. 27, no. 6, p. 572.
  3. Ponomarev, A.N., Abdrashitov, E.F., Kritskaya, D.A., Bokun, V.Ch., Sanginov, E.A., and Dobrovol’skii Yu.A., Synthesis of polymer nanocomposite ion-exchange membranes from sulfonated polystyrene and study of their properties, Russ. J. Electrochem., 2017, vol. 53, p. 589.
  4. Dargaville, T.R., George, G.A., Hill, D.J.T., and Whittaker, A.K., Investigation of the vapor-phase grafting of styrene onto PFA, Macromolecules, 2003, vol. 36, p. 8276.
  5. Kamel, I., Machi, S., and Silverman, J., Radiation-induced grafting of styrene vapor to polyethylene, J. Polym. Sci., Part A-1, Polym. Chem., 1973, vol. 10, p. 1019.
  6. Vlasov, A.V., Golubev, V.N., Tsetlin, B.L., and Ponomarev, A.N., Perspektivnye vysokoeffektivnye tekhnologii i materialy tekstil’noi promyshlennosti (Promising Highly Efficient Technologies and Materials of Textile Industry, Moscow: MISiS, 2002, p. 44.
  7. Ponomarev, A.N., Kritskaya, D.A., Pomogailo, A.D., and Dyachkovskii, F.S., Radiation-induced gas-phase grafted polymerization as method for producing macromolecular carriers for active catalytic sites, J. Polym. Sci., Polym. Symp., 1980, vol. 68, p. 23.
  8. Ponomarev, A.N. and Kritskaya, D.A., Plasma-initiated postpolymerization of methyl-methacrylate sorbed on polyethylene, Vysokomol. Soedin., Ser. B, 1981, vol. 23, no. 10, p. 786.
  9. Odian, G. and Kruse, R.L., The effect of diffusion on radiation graft polymerization, J. Polymer Sci., Pol. Lett. Ed., 1969, vol. 22, p. 691.
  10. Babkin, I.Y. and Tsetlin, B.L., Radiation graft polymerization as a method for modifying polymeric and inorganic materials, Zh. Vses. Khim. O-va im. D. I. Mendeleeva, 1973, vol. 18, p. 263.
  11. Bokun, V.Ch., Kritskaya, D.A., Abdrashitov, E.F., Ponomarev, A.N., Sanginov, E.A., Yaroslavtsev, A.B., and Dobrovol’skii, Yu.A., Proton conductivity of perfluorinated and nanocomposite ion exchange membranes in aqueous and water–methanol solutions, Russ. J. Electrochem., 2015, vol. 51, p. 435.
  12. Abdrashitov, E.F., Kritskaya, D.A., Bokun, V.C., and Ponomarev A.N., Kinetics of nanocomposite formation by thermal polymerization of styrene in the polyvinylidene fluoride matrix, Russ. J. Phys. Chem. B, 2015, vol. 9, no. 2, p. 316.
  13. Van Hook, J.P. and Tobolsky, A.V, The thermal decomposition of 2,2'-azo-bis-isobutyronitrile, J. Am. Chem. Soc, 1958, vol. 80, p. 779.
  14. Denisova, L.N. and Denisov, E.T., Formation of radicals by the reaction of oxygen with a double bond of styrene, Izv. Akad. Nauk SSSR, Ser. Khim., 1965, p. 1702.
  15. Hui, A.W. and Hamielec, A.E., Thermal polymerization of styrene at high conversions and temperatures. An experimental study, J. Appl. Polym. Sci., 1972, vol. 16, p. 749.
  16. Boutevin, B. and Bertin, D., Controlled free radical polymerization of styrene in the presence of nitroxide radicals I. Thermal initiation, Eur. Polym. J., 1999, vol. 35, p. 815.
  17. Abdrashitov, E.F., Kritskaya, D.A., Bokun, V.C., Ponomarev, A.N., Novikova, K.S., Sanginov, E.A., and Dobrovolsky, Y.A., Synthesis and properties of stretched polytetrafluoroethylene–sulfonated polystyrene nanocomposite membranes, Solid State Ionics, 2016, vol. 286, p. 135.