Examples



mdbootstrap.com



 
Статья
2022

Radiative p11C Capture Reaction Rate


S. B. DubovichenkoS. B. Dubovichenko, N. A. BurkovaN. A. Burkova, R. R. ShamitovaR. R. Shamitova
Российский физический журнал
https://doi.org/10.1007/s11182-022-02515-6
Abstract / Full Text

Within the frame of the modified potential cluster model with classification of orbital states according to Young’s diagrams, the astrophysical S-factor of radiative p11C capture was calculated. The calculations considered all scattering resonances up to 3.5 MeV and were performed at energies up to 5 MeV. On the basis of the obtained total cross sections, the reaction rate was calculated at temperatures from 0.01 to 10.0 Т9, and its simple parameterization was proposed.

Author information
  • Fesenkov Astrophysical Institute “NCSRT” ASC MDDIAI RK, Almaty, KazakhstanS. B. Dubovichenko
  • Al-Farabi Kazakh National University, Almaty, KazakhstanS. B. Dubovichenko, N. A. Burkova & R. R. Shamitova
References
  1. S. B. Dubovichenko, N. A. Burkova, A. V. Dzhazairov-Kakhramanov, and A. S. Tkachenko, Astropart. Phys., 104, 91−101 (2019).
  2. S. B. Dubovichenko, N. A. Burkova, and A. V. Dzhazairov-Kakhramanov, Nucl. Phys. A992, No. 12, 121625 (2019); https://doi.org/10.1016/j.nuclphysa.2019.121625; arXiv:1904.09069v1 [nucl-th].
  3. S. B. Dubovichenko, N. A. Burkova, A. V. Dzhazairov-Kakhramanov, and A. S. Tkachenko, Nucl. Phys., A983, 175−194 (2019).
  4. S. B. Dubovichenko, Thermonuclear Processes in Stars and Universe, Second English Edition, Scholar’s Press, Saarbrucken (2015); https://doi.org/10.1515/9783110619607-202; S. B. Dubovichenko S. B. Thermonuclear Processes in Stars and Universe, Fourth Russian Edition, Lambert Academy Publ. GmbH&Co. KG, Saarbrucken (2019); URL: https://www.morebooks.shop/store/ru/book/Термоядерные-процессы-в-звездах-и-Вселенной/isbn/978-620-0-25609-6 (in Russian).
  5. S. B. Dubovichenko, Radiative Neutron Capture and Primordial Nucleosynthesis of the Universe, First English edition, De Gruyter, Berlin (2019); https://doi.org/10.1515/9783110619607-201.
  6. J. H. Kelley, J. E. Purcell, and B. G. Sheu, Nucl. Phys., A968, 71−253 (2017).
  7. V. G. Neudatchin et al., Phys. Rev., C45, 1512−1527 (1992).
  8. O. F. Nemets et al., Nucleon Association in Atomic Nuclei and the Nuclear Reactions of the Many Nucleons Transfer [in Russian], Naukova Dumka, Kiev (1988).
  9. S. B. Dubovichenko, A. V. Dzhazairov-Kakhramanov, and N. A. Burkova, Int. J. Mod. Phys., 28, No. 7, 1930004 (2019).
  10. S. B. Dubovichenko and A. V. Dzhazairov-Kakhramanov, Nucl. Phys., A941, 335−363 (2015).
  11. C. Angulo et al., Nucl. Phys., А656, 3−183 (1999).
  12. S. B. Dubovichenko and A. V. Dzhazairov-Kakhramanov, Phys. Atom. Nucl., 58, 579−585 (1995).
  13. http://physics.nist.gov/cgi-bin/cuu/Value?mud|search_for = atomnuc!.
  14. http://cdfe.sinp.msu.ru/services/ground/NuclChart_release.html.
  15. A. M. Mukhamedzhanov and R. E. Tribble, Phys. Rev., C59, 3418−3424 (1999).
  16. G. R. Plattner and R. D. Viollier, Nucl. Phys., A365, 8 (1981).
  17. C. Itzykson and M. Nauenberg, Rev. Mod. Phys., 38, 95 (1966).
  18. Xiaodong Tang et al., Phys. Rev., C67, 015804 (2003).
  19. N. K. Timofeyuk, Phys. Rev., C88, 044315 (2013).
  20. B. Guo et al., J. Phys., G34, 103–114 (2007).
  21. D. W. Lee et al., J. Phys., G38, 075201 (2011).
  22. L. G. Sobotka et al., Phys. Rev., C87, 054329 (2013).
  23. G. R. Gaughlan and W. A. Fowler, Atom. Data Nucl. Data Tab., 40, 283−334 (1988).