Статья
2017

Electrochemical oxidation of formic acid at carbon supported Pt coated rotating disk electrodes


Azam Sayadi Azam Sayadi , Peter G. Pickup Peter G. Pickup
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517090117
Abstract / Full Text

The effect of electrode rotation on the oxidation of formic acid in aqueous sulphuric acid has been investigated at a glassy carbon electrode coated with a carbon supported Pt catalyst. Substantial mass transport effects were observed in cyclic voltammetry, steady-state measurements at constant potential, and chronoamperometry. However, a purely mass transport limited current was not observed under any conditions because of a decrease in the kinetic current at high potentials due to Pt oxide formation. Steady-state measurements, and currents from the cathodic scans in cyclic voltammetry, gave linear Koutecky–Levich plots with slopes in agreement with the literature diffusion coefficient. However, non-linearity and inaccurate slopes were observed for anodic scans and chronoamperometry. This has been shown to be due to small increases in the kinetic current with increasing rotation rate. Accurate kinetic currents can be obtained by applying the Koutecky–Levich equation at each rotation rate and use of the known mass transport limited current.

Author information
  • Department of Chemistry, Memorial University, St. John’s, Newfoundland and Labrador, A1B 3X7, Canada

    Azam Sayadi & Peter G. Pickup

References
  1. Jeon, H., Jeong, B., Joo, J., and Lee, J., Electrocatalysis, 2015, vol. 6, p. 20.
  2. Rees, N.V. and Compton, R.G., J. Solid State Electrochem., 2011, vol. 15, p. 2095.
  3. Kumar, P., Dutta, K., Das, S., and Kundu, P.P., Int. J. Energy Res., 2014, vol. 38, p. 1367.
  4. Mallick, R.K., Thombre, S.B., and Shrivastava, N.K., Renewab. Sustainab. Energy Rev., 2016, vol. 56, p. 51.
  5. Boronat-Gonzalez, A., Herrero, E., and Feliu, J.M., J. Solid State Electrochem., 2014, vol. 18, p. 1181.
  6. Jiang, K., Zhang, H.X., Zou, S.Z., and Cai, W.B., Phys. Chem. Chem. Phys., 2014, vol. 16, p. 20360.
  7. Casado-Rivera, E., Gal, Z., Angelo, A.C.D., et al., Chem. Phys. Chem., 2003, vol. 4, p. 193.
  8. Matsumoto, F., Roychowdhury, C., DiSalvo, F.J., and Abruna, H.D., J. Electrochem. Soc., 2008, vol. 155, p. B148.
  9. Bard, A.J. and Faulkner, L.R., Electrochemical Methods. Fundamentals and Applications, 2nd ed., New York: Wiley, 2001.
  10. Frumkin, A. and Aikazyan, E., Dokl. Akad. Nauk SSSR, 1955, vol. 100, p. 315.
  11. Koutecky, J. and Levich, V., Dokl. Akad. Nauk SSSR, 1957, vol. 117, p. 441.
  12. Frumkin, A. and Tedoradze, G., Dokl. Akad. Nauk SSSR, 1958, vol. 118, p. 530.
  13. Albery, W.J., Greenwood, A.R., and Kibble, R.F., Trans. Faraday Soc., 1967, vol. 63, p. 360.
  14. Pavese, A. and Solis, V., J. Electroanal. Chem., 1991, vol. 301, p. 117.
  15. Shin, D., Kim, Y.R., Choi, M., and Rhee, C.K., J. Electrochem. Sci. Technol., 2014, vol. 5, p. 82.
  16. Tripkovic, A.V., Popovic, K.D., Stevanovic, R.M., et al., Electrochem. Commun., 2006, vol. 8, p. 1492.
  17. Ghosh, T., Zhou, Q., Gregoire, J.M., et al., J. Phys. Chem. C, 2010, vol. 114, p. 12545.
  18. Lovic, J.D., Tripkovic, D.V., Popovic, K.D., et al., J. Serb. Chem. Soc., 2013, vol. 78, p. 1189.
  19. Bauskar, A.S. and Rice, C.A., Electrochim. Acta, 2013, vol. 107, p. 562.
  20. Brimaud, S., Solla-Gullon, J., Weber, I., et al., Chem. Electrochem., 2014, vol. 1, p. 1075.
  21. Garsany, Y., Singer, I.L., and Swider-Lyons, K.E., J. Electroanal. Chem., 2011, vol. 662, p. 396.
  22. Grozovski, V., Solla-Gullon, J., Climent, V., et al., J. Phys. Chem. C, 2010, vol. 114, p. 13802.
  23. Amarasinghe, S., Chen, T.Y., Moberg, P., et al., Anal. Chim. Acta, 1995, vol. 307, p. 227.
  24. Gloaguen, F., Andolfatto, F., Durand, R., and Ozil, P., J. Appl. Electrochem., 1994, vol. 24, p. 863.
  25. Lovic, J.D., Tripkovic, A.V., Gojkovic, S.L.J., et al., J. Electroanal. Chem., 2005, vol. 581, p. 294.
  26. Grozovski, V., Climent, V., Herrero, E., and Feliu, J.M., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 8822.