Статья
2016

Synthesis, microstructure, and electric properties of CaZr0.9Y0.1O3 – δ films obtained on porous SrTi0.8Fe0.2O3 – δ supports


L. A. Dunyushkina L. A. Dunyushkina , V. M. Kuimov V. M. Kuimov , A. A. Pankratov A. A. Pankratov , O. G. Reznitskikh O. G. Reznitskikh , A. Sh. Khaliullina A. Sh. Khaliullina
Российский электрохимический журнал
https://doi.org/10.1134/S1023193516110033
Abstract / Full Text

Compact CaZr0.9Y0.1O3–δ (CZY) film on a porous SrTi0.8Fe0.2O3–δ (STF) support is obtained using the technique of deposition from solutions of inorganic salts in ethanol. According to the data of scanning electron microscopy (SEM), the film has a nanoporous granular structure with the grain size of 0.2 to 1 μm. The thickness of the CZY film on the STF support is about 3 μm after 15-fold solution application. The results of studying the elemental composition showed that elements of the support diffuse into the film in the course of synthesis. Analysis of the data of impedance spectroscopy shows that conductivity of the CZY film is limited the grain bulk. It is assumed that the comparatively low conductivity activation energy of the film (50.3 kJ/mol) is due to diffusion of elements of the STF support that results in variation of the film composition and properties.

Author information
  • Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620990, Russia

    L. A. Dunyushkina, V. M. Kuimov, A. A. Pankratov, O. G. Reznitskikh & A. Sh. Khaliullina

References
  1. Hwang, S. and Choi, G., Solid State Ionics, 2006, vol. 177, p. 3099.
  2. Gorelov, V.P., Balakireva, V.B., Kuz’min, A.V., and Plaksin, S.V., Inorg. Mater., 2014, vol. 50, p. 495.
  3. Bao, J., Ohno, H., Kurita, N., Okuyama, Y., and Fukatsu, N., Electrochim. Acta, 2011, vol. 56, p. 1062.
  4. Xia, C., Zha, S., Yang, W., Peng, R., Peng, D., and Meng, G., Solid State Ionics, 2000, vol. 133, p. 287.
  5. Hidalgo, H., Reguzina, E., Millon, E., Thomann, A.-L., Mathias, J., Boulmer-Leborgne, C., Sauvage, T., and Brault, P., Surf. Coat. Technol., 2011, vol. 205, p. 4495.
  6. Beckers, L., Sanchez, F., Schubert, J., Zander, W., and Buchal, C., J. Appl. Phys., 1996, vol. 79, p. 3337.
  7. Galicka-Fau, K., Legros, C., Andrieux, M., Herbst-Ghysel, M., Gallet, I., Condat, M., Durand, O., and Servet, B., Solid Films, 2008, vol. 516, p. 7967.
  8. Dunyushkina, L.A., Plaksin, S.V., Pankratov, A.A., Kuzmina, L.A., Kuimov, V.M., and Gorelov, V.P., Russ. J. Electrochem., 2011, vol. 47, p. 1274.
  9. Dunyushkina, L.A., Smirnova, E.O., Smirnov, S.V., Kuimov, V.M., and Plaksin, S.V., Ionics, 2013, vol. 19, p. 511.
  10. Dunyshkina, L.A., Smirnov, S.V., Plaksin, S.V., Kuimov, V.M., and Gorelov, V.P., Ionics, 2013, vol. 19, p. 1715.
  11. Dunyushkina, L.A., Smirnov, S.V., Kuimov, V.M., and Gorelov, V.P., Int. J. Hydrogen Energy, 2014, vol. 39, p. 18385.
  12. Uchiyama, K., Isse, Y., Hori, Y., Nishida, T., Uraoka, Y., Kariya, T., and Yanagimoto, K., Proceedings of 6th Thin Film Materials & Devices Meeting, November, 2009, p. 100228102-1.
  13. Kharton, V., Kovalevsky, A., and Tsipis, E., J. Solid State Electrochem., 2002, vol. 7, p. 30.
  14. Guo, X. and Waser, R., Prog. Mater. Sci., 2006, vol. 51, p. 151.
  15. Jurado, J., Colomer, M., and Frade, J., Solid State Ionics, 2001, vol. 143, p. 251.
  16. Boukamp, B., Solid State Ionics, 1986, vol. 20, p. 31.
  17. Dudek, M. and Bućko, M.M., J. Solid State Electrochem., 2010, vol. 14, p. 565.
  18. Bao, J., Okuyama, Y., Shi, Z., Fukatsu, N., and Kurita, N., Mater. Trans., 2012, vol. 53, p. 973.
  19. Iwahara, H., Yajima, T., Hibino, T., Ozaki, K., and Suzuki, H., Solid State Ionics, 1993, vol. 61, p. 65.
  20. Savaniu, C.D., Canales-Vazquez, J., and Irvine, J.T.S., J. Mater. Chem., 2005, vol. 15, p. 598.
  21. Kreuer, K.D., Adams, S., Munch, W., Fuchs, A., Klock, U., and Maier, J., Solid State Ionics, 2001, vol. 145, p. 295.