Examples



mdbootstrap.com



 
Статья
2021

Interfacial Synthesis: Morphology, Structure, and Properties of Interfacial Formations in Liquid–Liquid Systems


E. N. GolubinaE. N. Golubina, N. F. KizimN. F. Kizim
Российский журнал физической химии А
https://doi.org/10.1134/S0036024421040075
Abstract / Full Text

The results of studies in the field of interfacial synthesis and interfacial formations in liquid–liquid systems are summarized. The mechanisms of the processes of interfacial synthesis are considered. Data on the self-assembly of nanoparticles, films, and 3D materials are given. The properties of materials of interfacial formations in systems with rare-earth elements and di(2-ethylhexyl)phosphoric acid, obtained both in the presence and absence of local vibrations, are described. It was established that materials obtained in the presence of local vibrations in the interfacial layer have higher density, melting point, and magnetic susceptibility and lower electric conductivity. The effect of force field parameters on the properties of interfacial formations is considered. Practical applications and prospects for research in the field of interfacial formations are discussed.

Author information
  • Novomoskovsk Institute, Mendeleev University of Chemical Technology of Russia, 301665, Novomoskovsk, RussiaE. N. Golubina & N. F. Kizim
References
  1. S. A. Tovstun, V. F. Razumov, Russ. Chem. Rev. 80, 953 (2011). https://doi.org/10.1070/RC2011v080n10ABEH004154
  2. P. Saheeda and S. Jayaleksmi, Opt. Mater. 104, 109940 (2020).
  3. N. Viriyakitpattana and P. Sunintaboon, Colloids Surf., A 603, 125180 (2020).
  4. S. G. Booth and R. A. W. Dryfe, J. Phys. Chem. C 119, 23295 (2015).
  5. V. I. Roldughin, Russ. Chem. Rev. 73, 115 (2004). https://doi.org/10.1070/RC2004v073n02ABEH000866
  6. B. D. Summ, N. I. Ivanova, Russ. Chem. Rev. 69, 911 (2000). https://doi.org/10.1070/RC2000v069n11ABEH000616
  7. J. Forth, P. Y. Kim, G. Xie, et al., Adv. Mater. 31, 1806370 (2019).
  8. M. D. Scanlon, E. Smirnov, T. J. Stockmann, et al., Chem. Rev. 118, 3722 (2018).
  9. A. Toor, T. Feng, and T. P. Russell, Eur. Phys. J. E 39, 57 (2016).
  10. L. Poltorak, A. Gamero-Quijano, G. Herzog, et al., Appl. Mater. Today 9, 533 (2017).
  11. E. N. Golubina, N. F. Kizim, and A. M. Chekmarev, Dokl. Phys. Chem. 465, 283 (2015). https://doi.org/10.1134/S001250161511007X
  12. E. N. Golubina, N. F. Kizim, and A. M. Chekmarev, Dokl. Phys. Chem. 488, 134 (2019). https://doi.org/10.1134/S0012501619090069
  13. I. Benjamin, Chem. Rev. 96, 1449 (1996).
  14. L. I. Boguslavskii, Vestn. MITKhT 5 (5), 3 (2010).
  15. N. F. Kizim, E. N. Golubina, and V. V. Tarasov, Khim. Tekhnol. 16, 125 (2015).
  16. M. Brust, M. Walker, D. Bethell, et al., J. Chem. Soc., Chem. Commun., No. 7, 801 (1994).
  17. C. N. R. Rao, G. U. Kulkarni, V. V. Agrawal, et al., J. Colloid Interface Sci. 289, 305 (2005).
  18. M. K. Bera, M. K. Sanyal, R. Banerjee, et al., Chem. Phys. Lett. 461, 97 (2008).
  19. C. Huang, M. Cui, Z. Sun, et al., Langmuir 33, 7994 (2017).
  20. D. V. Leff, L. Brandt, and J. Heath, Langmuir 12, 4723 (1996).
  21. S. R. Johnson, S. I. Evans, S. W. Mahon, et al., Supramol. Sci. 4 (b-A), 329 (1997).
  22. S. V. Kang, Langmuir 14, 226 (1998).
  23. C. Fan and L. Jiang, Langmuir 13, 3059 (1997).
  24. K. Meguro, M. Torizuka, and K. Esumi, Bull. Chem. Soc. Jpn. 61, 341 (1988).
  25. A. I. Lesnikovich and S. A. Vorob’eva, Vybr. Navuk. Prayts. BDU 5, 60 (2001).
  26. S. A. Vorobyova, N. S. Sobal, and A. I. Lesnikovich, Colloid Surf., A 176, 273 (2001).
  27. S. A. Vorob’eva, N. S. Sobal’, A. I. Lesnikovich, et al., Dokl. NAN Belarusi 44, 57 (2000).
  28. S. A. Vorobyova, A. I. Lesnikovich, and N. S. Sobal, Colloid Surf., A 152, 375 (1999).
  29. S. Sachdev, R. Maugi, J. Wooley, et al., Langmuir 33, 5464 (2017).
  30. E. M. Semenova, S. A. Vorob’eva, A. I. Lesnikovich, et al., Vestn. BGU, Ser. 2, No. 2, 126 (2010).
  31. S. A. Vorob’eva and S. E. Rzheusskii, Vestn. RGMU, No. 6, 111 (2018).
  32. E. M. Semenova, S. A. Vorobyova, and A. I. Lesnikovich, Opt. Mater. 34, 99 (2011).
  33. H. Gu, Z. Yang, J. Gao, et al., J. Am. Chem. Soc. 127, 34 (2005).
  34. A. N. Kudlash, S. A. Vorob’eva, A. I. Lesnikovich, et al., Vestn. BGU, Ser. 2, No. 2, 37 (2007).
  35. M. Sanyal, J. Mater. Chem. 19, 4300 (2009).
  36. M. L. Schlossman, M. Li, D. M. Mitrinovic, et al., High Perform. Polym. 12, 551 (2000).
  37. M. D. Serio, A. N. Bader, M. Heule, et al., Chem. Phys. Lett. 380 (9), 47 (2003).
  38. O. Shpyrko, P. Huber, A. Grigoriev, et al., Phys. Rev. B 67, 115405 (2003).
  39. P. Pillai, B. Kowalczyk, and B. Grzybowski, Nanoscale 8, 157 (2016).
  40. K. Y. Lee, Y. Bae, M. Kim, et al., Thin Solid Films 515, 2049 (2006).
  41. F. Bresme and M. Oettel, J. Phys.: Condens. Matter 19, 413101 (2007).
  42. O. A. Sinegribova and S. V. Chizhevskaya, Russ. J. Inorg. Chem. 42, 1271 (1997).
  43. E. N. Golubina and N. F. Kizim, Izv. TulGU, Estestv. Nauki, No. 1 (2), 198 (2014).
  44. G. A. Yagodin, V. V. Tarasov, and S. Y. Ivakhno, Hydrometallurgy 8, 293 (1982).
  45. V. V. Tarasov and G. A. Yagodin, in Ion Exchange and Solvent Extraction, Vol. 10 of A Series of Advances (Marcel Dekker, USA, 1988), p. 141.
  46. N. F. Kizim and Yu. P. Davydov, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 6, 20 (1985).
  47. N. F. Kizim and A. P. Lar’kov, Radiokhimiya 30, 190 (1988).
  48. N. F. Kizim and E. N. Golubina, Russ. J. Phys. Chem. A 92, 565 (2018). https://doi.org/10.1134/S003602441803010X
  49. E. N. Golubina, N. F. Kizim, E. V. Sinyugina, and I. N. Chernyshev, Mendeleev Commun. 28, 110 (2018).
  50. N. F. Kizim, E. N. Golubina, and A. M. Chekmarev, Russ. J. Phys. Chem. A 87, 502 (2013). https://doi.org/10.1134/S0036024413030138
  51. E. N. Golubina, N. F. Kizim, and A. M. Chekmarev, Russ. J. Phys. Chem. A 88, 1594 (2014). https://doi.org/10.1134/S0036024414090155
  52. N. F. Kizim and E. N. Golubina, Radiochemistry 58, 287 (2016). https://doi.org/10.1134/S1066362216030103
  53. E. Golubina, N. Kizim, and N. Alekseeva, Chem. Eng. Process.: Process Intensif. 132 (10), 98 (2018).
  54. E. N. Golubina and N. F. Kizim, Russ. J. Inorg. Chem. 57, 1280 (2012).
  55. E. N. Golubina, N. F. Kizim, and A. M. Chekmarev, Dokl. Phys. Chem. 449, 71 (2013). https://doi.org/10.1134/S0012501613040052
  56. V. V. Tarasov and Z. D. Xiang, Dokl. Phys. Chem. 350, 271 (1996).
  57. D. Wyrwa, N. Beyer, and N. Schmid, Nano Lett. 2, 419 (2002).
  58. H. Duan, D. Wang, D. G. Kurth, et al., Angew. Chem., Int. Ed. Engl. 43, 5639 (2004).
  59. W. H. Binder, Angew. Chem., Int. Ed. Engl. 44, 5172 (2005).
  60. N. Popp, S. Kutuzov, and A. Böker, Adv. Polym. Sci. 228, 39 (2010).
  61. L. Dai, R. Sharma, and C. Y. Wu, Langmuir 21, 2641 (2005).
  62. M. F. Suárez-Herrera, P.-A. Cazade, D. Thompson, et al., Electrochem. Commun. 109, 106564 (2019).
  63. M. F. Suárez-Herrera and M. D. Scanlon, Electrochim. Acta 328, 135110 (2019).
  64. G. C. Gschwend, E. Smirnov, P. Peljoa, et al., Faraday Discuss. 199, 565 (2017).
  65. P. Peljo and H. Girault, in Encyclopedia of Analytical Chemistry, Ed. by F. Reymond and H. H. Girault (Wiley, New York, 2012), p. 1.
  66. V. Divya and M. V. Sangaranarayanan, J. Nanosci. Nanotechnol. 15, 6863 (2015).
  67. A. Gamero-Quijano, G. Herzog, and M. D. Scanlon, Electrochim. Acta 330, 135328 (2020).
  68. M. Cui, C. Miesch, I. Kosif, et al., Nano Lett. 17, 6855 (2017).
  69. A. Daher, A. Ammar, and A. Hijazi, in Proceedings of the 21st International ESAFORM Conference on Material Forming, 2018, p. 080001.
  70. S. Shi and T. P. Russell, Adv. Mater. 30, 1800714 (2018).
  71. K. Y. Lee, M. Kim, S. Kwon, et al., Mater. Lett. 60, 1622 (2006).
  72. J. Faraudo and F. Bresme, J. Chem. Phys. 118, 6518 (2003).
  73. B. P. Binks and S. O. Lumsdon, Langmuir 16, 8622 (2000).
  74. B. P. Binks and P. D. I. Fletcher, Langmuir 17, 4708 (2001).
  75. B. Binks and J. H. Clint, Langmuir 18, 1270 (2002).
  76. K. Liu, J. Jiang, Z. Cui, and B. Binks, Langmuir 33, 2296 (2017).
  77. M. Zanini and L. Isa, J. Phys.: Condens. Matter 28, 313002 (2016).
  78. S. Levine, B. Bowen, and S. Partridge, Colloids Surf. 38, 325 (1989).
  79. Y. Lin, A. Böker, H. Skaff, et al., Langmuir 21, 191 (2005).
  80. Y. Lin, H. Skaff, T. Ermick, et al., Science (Washington, DC, U. S.) 299, 226 (2003).
  81. P. Tran, T. Wang, W. Yin, et al., Int. J. Pharm. 566, 697 (2019).
  82. Z. Mao, J. Guo, S. Bai, et al., Angew. Chem. Int. Ed. 48, 4953 (2009).
  83. E. V. Yurtov and N. M. Murashova, Theor. Found. Chem. Eng. 41, 737 (2007).
  84. E. V. Yurtov, N. M. Murashova, and A. M. Datsenko, Russ. J. Inorg. Chem. 51, 670 (2006).
  85. E. V. Yurtov and N. M. Murashova, Russ. J. Inorg. Chem. 48, 1096 (2003).
  86. E. V. Yurtov and N. M. Murashova, Colloid J. 66, 629 (2004).
  87. U. K. Gautam, M. Ghosh, and C. N. R. Rao, Langmuir 20, 10778 (2004).
  88. F. Jones, J. Clegg, A. Oliveira, et al., Cryst. Eng. Commun. 40 (3), 1 (2001).
  89. M. Sastry, Curr. Sci. 85, 1735 (2003).
  90. E. A. Mishchikhina, E. A. Khristich, V. I. Popenko, et al., Vestn. MITKhT 6 (6), 93 (2011).
  91. O. Dell and O. Lebaigue, Mech. Ind. 602, 1 (2017).
  92. L. Isa, K. Kumar, M. Müller, et al., ACS Nano 4, 5665 (2010).
  93. N. G. Sukhodolov, N. S. Ivanov, and E. P. Podol’skaya, Nauchn. Priborostr. 23, 86 (2013).
  94. G. B. Khomutov, Radioelektron. Nanosist. Inform. Tekhnol. 4 (2), 38 (2012).
  95. T. Yamaki, R. Shinohara, and K. Asai, Thin Solid Films 303, 154 (2001).
  96. E. K. Beloglazkina, A. G. Mazhuga, R. B. Romashkina, N. V. Zyk, and N. S. Zefirov, Russ. Chem. Rev. 81, 65 (2012).
  97. Zh. Kelgenbaeva, E. Omurzak, Sh. Takebe, et al., J. Nanopart. Res. 16, 2603 (2014).
  98. Q. Liu, Y. Pu, Z. Zhao, et al., Trans. Tianjin Univ., No. 12, 259 (2019).
  99. C. Inagakia and M. Oliveira, J. Colloid Interface Sci. 516, 498 (2018).
  100. D. Yogev and S. Efrima, J. Phys. Chem. 92, 5754 (1988).
  101. C. N. R. Rao and K. P. Kalyanikutty, Acc. Chem. Res. 41, 489 (2008).
  102. H. Schwartz, Y. Harel, and S. Efrima, Langmuir 17, 3884 (2001).
  103. Y. Park, S. Yoo, and S. Park, Langmuir 23, 10505 (2007).
  104. Y. Park and S. Park, Chem. Mater. 20, 2388 (2008).
  105. F. Reincke, S. G. Hickey, W. K. Kegel, et al., Angew. Chem. 116, 458 (2004).
  106. K. S. Mayya and M. Sastry, Langmuir 15, 1902 (1999).
  107. W. Lee, H. Chen, R. Dryfeb, et al., Colloids Surf., A 343, 3 (2009).
  108. J. Flath, F. C. Meldrum, and W. Knoll, Thin Solid Films 327–329, 506 (1998).
  109. F. C. Meldrum, N. A. Kotov, and J. H. Fendler, J. Phys. Chem. 98, 4506 (1994).
  110. S. D. Sathaye, K. R. Patil, D. V. Paranjape, et al., Langmuir 16, 3487 (2000).
  111. B. G. Rao, D. Mukherjee, and B. M. Reddy, Nanostructures for Novel Therapy Synthesis, Characterization and Applications, Ed. by D. Ficai and A. M. Grumezescu, Micro and Nano Technologies (Elsevier, Amsterdam, 2017), p. 1.
  112. Ch.-M. Hsu and S. T. Connor, Appl. Phys. Lett. 93, 133109 (2008).
  113. G. B. Khomutov, Adv. Colloid Interface Sci. 111, 79 (2004).
  114. S. Reculusa and P. Masse, J. Colloid Interface Sci. 279, 471 (2004).
  115. A. A. Mamedov, A. Belov, M. Giersig, et al., J. Am. Chem. Soc. 123, 7738 (2001).
  116. N. F. Kizim and E. N. Golubina, Khim. Tekhnol. 10, 296 (2009).
  117. N. F. Kizim and E. N. Golubina, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 52 (6), 19 (2009).
  118. E. N. Golubina and N. F. Kizim, Khim. Tekhnol. 11, 424 (2010).
  119. O. M. Gradov, Y. A. Zakhodyaeva, and A. A. Voshkin, Chem. Eng. Process. 131, 125 (2018).
  120. N. F. Kizim, E. N. Golubina, and A. M. Chekmarev, Theor. Found. Chem. Eng. 49, 550 (2015). https://doi.org/10.1134/S0040579515040107
  121. D. D. Ryabov, E. N. Golubina, and N. F. Kizim, Usp. Khim. Khim. Tekhnol. 33 (10), 47 (2019).
  122. N. F. Kizim and E. N. Golubina, Russ. J. Phys. Chem. A 77, 2064 (2003).
  123. N. F. Kizim and E. N. Golubina, Russ. J. Phys. Chem. A 83, 1230 (2009). https://doi.org/10.1134/S0036024409070334
  124. E. N. Golubina, N. F. Kizim, and A. M. Chekmarev, Dokl. Phys. Chem. 447, 220 (2012). https://doi.org/10.1134/S0012501612120032
  125. I. N. Chernyshev, E. V. Safronova, E. N. Golubina, and N. F. Kizim, Usp. Khim. Khim. Tekhnol. 31 (13), 11 (2017).
  126. Yu. I. Trifonov, E. K. Legin, and D. N. Suglobov, Radiokhimiya, No. 3, 138 (1992).
  127. Yu. I. Trifonov, E. K. Legin, and D. N. Suglobov, Radiokhimiya, No. 3, 144 (1992).
  128. M. Hilgendorff, B. Tesche, and M. Giersig, Aust. J. Chem. 54, 497 (2001).
  129. J. Legrand, A. Ngo, C. Petit, et al., Adv. Mater. 13, 58 (2001).
  130. Y. Ishii, Y. Zhou, K. He, et al., Soft Matter, No. 6, 754 (2020).
  131. K. Loudiyi and B. J. Ackerson, Phys. A (Amsterdam) 184, 1 (1992).
  132. S. I. Gutnikov, Y. V. Pavlov, and E. S. Zhukovskaya, J. Non-Cryst. Solids 501, 71 (2018).
  133. O. P. Fedorov and E. L. Zhivolub, Crystallogr. Rep. 47, 519 (2002).
  134. B. Ubbenjans, Ch. Frank-Rotsch, J. Virbulis, et al., Cryst. Res. Technol. 47, 279 (2012).
  135. C. Lan, D. V. Lyubimov, T. P. Lyubimova, et al., Fluid Dyn. 43 (4), 51 (2008).
  136. F. Wang and X. Han, J. Mater. Sci. 35, 1907 (2000).
  137. G. Chirita, I. Stefanescu, D. Soares, et al., Mater. Des. 30, 1575 (2009).
  138. V. K. Erofeev, G. A. Vorob’eva, G. A. Luk’yanov, et al., Metalloobrabotka, No. 4, 21 (2007).
  139. S. Belyaev, A. Volkov, and N. Resnina, Ultrasonics 54, 84 (2014).
  140. O. V. Rudenko, A. I. Korobov, B. A. Korshak, P. V. Lebedev-Stepanov, S. P. Molchanov, and M. V. Alfimov, Nanotechnol. Russ. 5, 469 (2010).
  141. Yu. K. Moshkov, D. A. Negrov, and L. F. Kalistratova, Omsk. Nauch. Vestn. 73 (4), 23 (2008).
  142. L. Zhang, D. G. Eskin, A. Miroux, et al., Light Met., 999 (2012).
  143. H. Puga, J. Barbosa, S. Costa, et al., Mater. Sci. Eng. A 560, 589 (2013).
  144. H. U. Xingjia, L. I. Xinhe, and Q. I. Qingyuan, Appl. Mech. Mater. 470, 162 (2014).
  145. V. P. Alekhin, O. V. Alekhin, and E. V. Krylova, Vopr. At. Nauki Tekh. 78 (2), 120 (2012).
  146. L. Qi and M. Guobing, Surf. Rev. Lett. 16, 895 (2009).
  147. T. Tuziuti, K. Yasui, T. Kozuka, et al., J. Phys. Chem. A 114, 7321 (2010).
  148. E. N. Golubina and N. F. Kizim, Russ. J. Appl. Chem. 91, 828 (2018). https://doi.org/10.1134/S1070427218050142
  149. E. N. Golubina and N. F. Kizim, Russ. J. Appl. Chem. 89, 1757 (2016). https://doi.org/10.1134/S1070427216110045
  150. V. V. Tarasov, Z. D. Xiang, and G. G. Larin, Theor. Found. Chem. Eng. 34, 166 (2000).
  151. B. Xue and W. Wang, J. Chem. Phys. 122, 194912 (2005).
  152. T. P. Kulagina, L. P. Smirnov, and Z. S. Andrianova, MOJ Biorg. Org. Chem. 2, 163 (2018).
  153. M. K. Bera, M. K. Sanyal, R. Banerjee, et al., Chem. Phys. Lett. 461, 97 (2008).
  154. A. Shah, S. Izman, S. Ismail, et al., Metals 8, 317 (2018).
  155. P. V. Lebedev-Stepanov and O. V. Rudenko, Acoust. Phys. 55, 729 (2009).
  156. J. H. Bang and K. S. Suslick, Adv. Mater. 22, 1039 (2010).
  157. V. V. Tarasov, N. F. Kizim, and Chzhan Dun Syan, Voda: Khim. Ekol., No. 12, 41 (2010).
  158. V. V. Tarasov, D. X. Zhang, H. Hung-Ching, et al., Russ. J. Appl. Chem. 76, 1099 (2003).
  159. N. F. Kizim and E. N. Golubina, RF Patent No. 2534012, Byull. Izobret., No. 33 (2014).
  160. E. N. Golubina, N. F. Kizim, and I. V. Pfaifer, Usp. Khim. Khim. Tekhnol. 29 (6), 113 (2015).
  161. N. F. Kizim and E. N. Golubina, Russ. J. Appl. Chem. 93, 1042 (2020). https://doi.org/10.1134/S1070427220070149
  162. N. F. Kizim, E. N. Golubina, and A. M. Chekmarev, Dokl. Phys. Chem. 392, 362 (2003).
  163. N. F. Kizim, E. N. Golubina, and A. M. Chekmarev, Dokl. Phys. Chem. 411, 411 (2006). https://doi.org/10.1134/S0012501606120037
  164. Y. Chao and L. T. Hun, Soft Matter 16, 6050 (2020).
  165. W. Fei, Y. Gu, and K. J. M. Bishop, Curr. Opin. Colloid Interface Sci. 32, 57 (2017).
  166. D. Cai, F. H. Richter, J. H. J. Thijssen, et al., Mater. Horiz. 5, 499 (2018).
  167. S. A. Nikitin, Magnetic Properties of Rare Earth Metals and Their Alloys (Mosk. Gos. Univ., Moscow, 1989) [in Russian].
  168. K. Taylor and M. Darby, Physics of Rare Earth Solids (Chapman and Hall, London, 1972).
  169. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1974).
  170. B. P. Binks and S. O. Lumsdon, Phys. Chem. Chem. Phys., No. 13, 2959 (2000).
  171. M. M. Shirolkar, D. Phase, V. Sathe, et al., J. Appl. Phys. 109, 123512 (2011).
  172. J. Forth, X. Liu, J. Hasnain, A. Toor, et al., Adv. Mater. 30, 1707603 (2018).
  173. R. Xu, T. Liu, H. Sun, et al., Appl. Mater. Interfaces 12, 18116 (2020).
  174. H. Sun, L. Li, T. P. Russell, et al., J. Am. Chem. Soc. 142, 8591 (2020).
  175. C. Huang, Y. Chai, Y. Jiang, et al., Nano Lett. 18, 2525 (2018).
  176. W. Feng, Y. Chai, J. Forth, et al., Nat. Commun. 10, 1095 (2019).
  177. D. J. Arismendi-Arrieta and A. J. Moreno, J. Colloid Interface Sci. 570, 212 (2020).
  178. Y. Jiang, R. Chakroun, A. H. Gröschel, et al., Angew. Chem. Int. Ed. 59, 548 (2020).
  179. Q. Diao, X. Li, M. Diao, et al., J. Colloid Interface Sci. 522, 272 (2018).
  180. S. Li, M. Han, and H.-G. Liu, Appl. Surf. Sci. 516, 146136 (2020).
  181. L. Velleman, D. Sikdar, V. A. Turek, et al., Nanoscale 8, 19229 (2016).
  182. M. Turner, V. B. Golovko, O. P. H. Vaughan, et al., Nature (London, U.K.) 454, 981 (2008).
  183. L. Isa, D. C. E. Calzolari, D. Pontoni, et al., Soft Matter 9, 3789 (2013).
  184. V. O. Zenchenko, Usp. Sovrem. Nauki 6 (11), 187 (2016).
  185. R. V. Borisov and O. V. Belousov, J. Sib. Fed. Univ., Chem. 7, 331 (2014).
  186. R. V. Borisov, O. V. Belousov, A. M. Zhizhaev, et al., J. Sib. Fed. Univ., Chem. 8, 377 (2015).
  187. B. G. Ershov, Ross. Khim. Zh. 45 (3), 20 (2001).
  188. I. C. Nnorom, J. C. Igwe, C. G. Oji-Nnorom, et al., J. Biotechnol., 1133 (2005).
  189. G. J. Nohynek, E. Antignac, T. Re, et al., Toxicol. Appl. Pharmacol. 243, 239 (2010).
  190. L. J. Loretz, A. M. Api, L. Babcock, et al., Food Chem. Toxicol. 46, 1516 (2008).
  191. L. F. Abaeva, V. I. Shumskii, E. N. Petritskaya, et al., Al’man. Klin. Med., No. 22, 10 (2010).
  192. L. Dykman and N. Khlebtsov, Chem. Soc. Rev. 41, 2256 (2012).
  193. N. Elahi, M. Kamali, and M. H. Baghersad, Talanta 184, 537 (2018).
  194. L. S. Sosenkova and E. M. Egorova, Russ. J. Phys. Chem. A 85, 264 (2011). https://doi.org/10.1134/S0036024411020324
  195. I. S. Teplov, N. V. Nesterova, I. A. Chmutin, et al., Med. Obrazov. Vuz. Nauka, Nos. 3–4, 109 (2018).
  196. Yu. A. Krutyakov, A. A. Kudrinskiy, A. Yu. Olenin, et al., Russ. Chem. Rev. 77, 233 (2008). https://doi.org/10.1070/RC2008v077n03ABEH003751
  197. J. J. Xu, L. L. Li, and H. Shi, Inorg. Chem. Commun. 107, 107456 (2019).
  198. D. Kim, Y. Y. Jeong, and S. Jon, ACS Nano 4, 3689 (2010).
  199. M. Malmsten, Curr. Opin. Colloid Interface Sci. 18, 468 (2013).
  200. G. Doria, J. Conde, and B. Veigas, Sensors 12, 1657 (2012).
  201. N. G. Khlebtsov, V. A. Bogatyrev, L. A. Dykman, et al., Ross. Nanotekhnol. 2 (3–4), 69 (2007).
  202. V. S. Burakov, N. V. Tarasenko, E. A. Nevar, and M. I. Nedel’ko, Tech. Phys. 56, 245 (2011).
  203. A. V. Avdeeva, S. Tszan, A. Muradova, et al., Izv. Vyssh. Uchebn. Zaved., Elektron. 21 (2), 152 (2016).
  204. J. Xia, K. Diao, and Zh. Zheng, RSC Adv. 7, 38444 (2017).
  205. Ch. Uboldi, P. Urbán, and D. Gilliland, Toxicol. in Vitro 31, 137 (2016).
  206. V. Potapov, S. Muradov, V. Sivashenko, et al., Nanoindustriya 33 (3), 32 (2012).
  207. O. V. Zakharova and A. A. Gusev, Nanotechnol. Russ. 14, 311 (2019).
  208. B. Wu, Y. Kuang, X. Zhang, et al., Nano Today 6, 75 (2011).
  209. A. V. Ivanov, N. V. Maksimova, A. P. Malakho, et al., Inorg. Mater. 53, 568 (2017). https://doi.org/10.1134/S0020168517060061
  210. O. N. Shornikova, A. P. Malakho, A. V. Govorov, et al., Fibre Chem. 47, 367 (2016).
  211. A. V. Krestinin, Nanotechnol. Russ. 14, 411 (2019).
  212. E. R. Badamshina, M. P. Gafurova, and Ya. I. Estrin, Russ. Chem. Rev. 79, 945 (2010).
  213. E. G. Rakov, Russ. Chem. Rev. 2 (1), 27 (2013).
  214. T. F. Irzhak and V. I. Irzhak, Polymer Sci., Ser. A 59, 791 (2017).
  215. H. Qian, E. S. Greenhalgh, M. S. P. Shaffer, et al., J. Mater. Chem. 20, 4751 (2010).
  216. M. Moniruzzaman and K. I. Winey, Macromolecules 39, 5194 (2006).
  217. N. Coleman, U. Khan, W. J. Blau, et al., Carbon 44, 1624 (2006).
  218. S. I. Yengejeh, S. A. Kazemi, and A. Ochsner, Comput. Mater. Sci. 136, 85 (2017).
  219. Ch. Tsai, Ch. Zhang, and D. A. Jack, J. Nanosci. Nanotechnol. 11, 2132 (2011).
  220. J. C. Halpin and J. L. Karlos, Polym. Eng. Sci. 16, 344 (1976).
  221. M. F. L. de Volder, S. H. Tawfick, R. H. Baughman, et al., Science (Washington, DC, U. S.) 339, 535 (2013).
  222. G. Hummer, J. C. Rasaiah, and J. P. Noworyta, Nature (London, U.K.) 414, 188 (2001).
  223. J. K. Holt, H. G. Park, Y. M. Wang, et al., Science (Washington, DC, U. S.) 312, 1034 (2006).
  224. A. V. Gusev, K. A. Mailyan, A. V. Pebalk, I. A. Ryzhikov, and S. N. Chvalun, J. Commun. Technol. Electron. 54, 833 (2009).
  225. S. P. Savin, Izv. Samar. Nauch. Tsentra Ross. Akad. Nauk, No. 4, 686 (2012).
  226. A. V. Zimbitskii and Yu. V. Stasyuk, Nauch. Vestn. MGTU GA, No. 208, 99 (2014).
  227. A. R. Noskova and V. P. Postnikov, J. Master’s, No. 1, 153 (2018).
  228. L. A. Dykman and N. G. Khlebtsov, Usp. Biol. Khim. 56, 411 (2016).
  229. S. O. Pereira, A. Barros-Timmons, and T. Trindade, Colloid Polym. Sci. 292, 33 (2014).
  230. S. Shi, B. Qian, X. Wu, et al., Angew. Chem. Int. Ed. Engl. 58, 18171 (2019).