Synthesis and Ionic Conductivity of LiZr2(VO4)x(PO4)3 – x

V. I. Pet’kov V. I. Pet’kov , A. S. Shipilov A. S. Shipilov , D. G. Fukina D. G. Fukina , I. A. Stenina I. A. Stenina , A. B. Yaroslavtsev A. B. Yaroslavtsev
Российский электрохимический журнал
Abstract / Full Text

Vanadate phosphates LiZr2(VO4)x(PO4)3 – x are synthesized by the sol-gel technique with subsequent annealing and studied using X-ray diffraction analysis, IR spectroscopy, synchronous differential scanning calorimetry, thermogravimetric analysis, and impedance spectroscopy. In the LiZr2(VO4)x(PO4)3 – x system, a limited series of solid solutions (0 ≤ х ≤ 0.8) with the NASICON (Sc2(WO4)3) structure forms. An increase in the vanadium content in the LiZr2(VO4)x(PO4)3 – x system leads to an increase in the lithium-ionic conductivity which reaches 6.3 × 10–3 S/cm for LiZr2(VO4)0.6(PO4)2.4 at 570 K. At elevated temperature, the temperature dependences of conductivity of samples with x = 0.4–0.8 demonstrate kinks associated with dissolution of silver from electrodes in these materials.

Author information
  • Lobachevskii State University, 603950, Nizhny Novgorod, Russia

    V. I. Pet’kov, A. S. Shipilov & D. G. Fukina

  • Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119071, Moscow, Russia

    I. A. Stenina & A. B. Yaroslavtsev

  1. Scrosati, B. and Garche, J., Lithium batteries: Status, prospects and future, J. Power Sources, 2010, vol. 195, p. 2419.
  2. Yaroslavtsev, A.B., Kulova, T.L., and Skundin, A.M., Electrode nanomaterials for lithium-ion batteries, Russ. Chem. Rev., 2015, vol. 84, no. 8, p. 826.
  3. Zheng, F., Kotobuki, M., Song, S., Lai, M.O., and Lu, L., Review on solid electrolytes for all-solid-state lithium-ion batteries, J. Power Sources, 2018, vol. 389, p. 198.
  4. Kim, S.-W., Seo, D.-H., Ma, X., Ceder, G., and Kang, K., Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries, Adv. Energy Mater., 2012, vol. 2, no. 7, p. 710.
  5. Ponrouch, A., Monti, D., Boschin, A., Steen, B., Johansson, P., and Palacín, M.R., Non-aqueous electrolytes for sodium-ion batteries, J. Mater. Chem. A, 2015, vol. 3, no. 1, p. 22.
  6. Kim, N., Myung, Y., Kang, H., Lee, J.-W., and Yang, M., Effects of methyl acetate as a co-solvent in carbonate-based electrolytes for improved lithium metal batteries, ACS Appl. Mater. Interfaces, 2019, vol. 11, no. 37, p. 33844.
  7. Stenina, I.A. and Yaroslavtsev, A.B., Nanomaterials for lithium-ion batteries and hydrogen energy, Pure Appl. Chem., 2017, vol. 89, no. 8, p. 1185.
  8. Zhang, Q., Liu, K., Ding, F., and Liu, X., Recent advances in solid polymer electrolytes for lithium batteries, Nano Res., 2017, vol. 10, no. 12, p. 4139.
  9. Voropaeva, D.Y., Novikova, S.A., Kulova, T.L., and Yaroslavtsev, A.B., Conductivity of Nafion-117 membranes intercalated by polar aprotonic solvents, Ionics, 2018, vol. 24, no. 6, p. 1685.
  10. Deng, K., Zeng, Q., Wang, D., Liu, Z., Qiu, Z., Zhang, Y., Xiao, M., and Meng, Y., Single-ion conducting gel polymer electrolytes: design, preparation and application, J. Mater. Chem. A, 2020, vol. 8, no. 4, p. 1557.
  11. Pinus, I.Yu., Khoroshilov, A.V., Gavrichev, K.S., Tarasov, V.P., and Yaroslavtsev, A.B., On cationic mobility in Nasicon phosphates LiTi2(PO4)3 and Li0.9Ti1.9Nb0.1(PO4)3, Solid State Ionics, 2012, vol. 212, p. 112.
  12. Pet’kov, V.I., Orlova, A.I., and Shekhtman, G.Sh., Crystal chemistry and electroconductivity of the MxZr2.25 – 0.25x(PO4)3 (M = Li, Na, K, Rb, Cs) binary phosphates of the NZP structure, Russ. J. Electrochem., 1996, vol. 32, p. 574.
  13. Bachman, J.C., Muy, S., Grimaud, A., Chang, H.-H., Pour, N., Lux, S.F., Paschos, O., Maglia, F., Lupart, S., Lamp, P., Giordano, L., and Shao-Horn, Y., Inorganic solid-state electrolytes for lithium batteries: Mechanisms and properties governing ion conduction, Chem. Rev., 2016, vol. 116, no. 1, p. 140.
  14. Kim, S., Jung, C., Kim, H., Thomas-Alyea, K.E., Yoon, G., Kim, B., Badding, M.E., Song, Z., Chang, J., Kim, J., Im, D., and Kang, K., The role of interlayer chemistry in Li-metal growth through a garnet-type solid electrolyte, Adv. Energy Mater., 2020, vol. 10, no. 12, p. 1903993.
  15. Pet’kov, V.I., Complex phosphates formed by metal cations in oxidation states I and IV, Russ. Chem. Rev., 2012, vol. 81, no. 7, p. 606.
  16. Hanghofer, I., Gadermaier, B., Wilkening, A., Rettenwander, D., and Wilkening, H.M.R., Lithium ion dynamics in LiZr2(PO4)3 and Li1.4Ca0.2Zr1.8(PO4)3, Dalton Trans., 2019, vol. 48, p. 9376.
  17. Pet’kov, V.I., Sukhanov, M.V., Shipilov, A.S., Kurazhkovskaya, V.S., Borovikova, E.Y., Pinus, I.Y., and Yaroslavtsev, A.B., Synthesis and properties of LiZr2(AsO4)3 and LiZr2(AsO4)x(PO4)3 – x , Inorg. Mater., 2014, vol. 50, no. 3, p. 263.
  18. Sukhanov, M.V., Pet’kov, V.I., and Firsov, D.V., Sintering mechanism for high-density NZP ceramics, Inorg. Mater., 2011, vol. 47, no 6, p. 674.
  19. Sigarev, S.E., Superionic conductors with mixed network [M 2P3O12]3∞: Crystal structure and physical properties. 1. Lithium-conducting phosphates, Kristallografiya, 1992, vol. 32, no. 4, p. 4055.
  20. Stenina, I.A., Kislitsyn, M.N., Pinus, I.Yu., and Yaroslavtsev, A.B., Phase transition through intermediate formation?, Mendeleev Commun., 2004, vol. 14, no 5. p. 191.
  21. Shchelkanova, M.S., Shekhtman, G.Sh., Kalashnova, A.V., and Antonov, B.D., On electrical conductivity measurement for lithium-vanadium bronze, Russ. J. Appl. Chem., 2017, vol. 90, no. 11, p. 1766.
  22. Smirnov, N.B., Burmakin, E.I., and Shekhtman, G.Sh., Polyalkaline effect in solid electrolytes with γ-K4P2O7 structure, Russ. J. Appl. Chem., 2000, vol. 73, no. 8, p. 1405.