Статья
2020

Ion Transport in Lithium Electrochemical Systems: Problems and Solutions


A. V. Ivanishchev A. V. Ivanishchev , I. A. Ivanishcheva I. A. Ivanishcheva
Российский электрохимический журнал
https://doi.org/10.1134/S1023193520100055
Abstract / Full Text

The realizing of new electrode materials and the modification of existing ones are important trends in the development of lithium-ion batteries. Of particular importance is the assessment of their diffusion ability, that is, the ability to provide transport of the electroactive component. For this purpose, electrochemical methods such as cyclic voltammetry, electrochemical impedance spectroscopy, potentiostatic intermittent titration, and galvanostatic intermittent titration techniques are used. The chemical diffusion coefficient D estimated in such electrode materials is shown to have a spread in values by several orders of magnitude. The main reasons for this rather significant dispersion are discussed, including the uncertainty of the estimates of the diffusion surface area and the using of various approaches to the obtaining of equations for the calculating of D. The conclusions are illustrated by examples of the D estimates in LixC6-, LixSn-, LixTiO2-, LixWO3-, LiMyMn2 – yO4-, and LiFePO4-based electrode materials.

Author information
  • Institute of Chemistry, Saratov State University, 410012, Saratov, Russia

    A. V. Ivanishchev & I. A. Ivanishcheva

References
  1. Povarov, Yu.M. and Beketaeva, L.A., Lithium passivation mechanism in thionyl chloride, Elektrokhimiya, 1980, vol. 16, p. 1252.
  2. Chakhov, N.I., Povarov, Yu.M., and Pleskov, Yu.V., Effect of illumination on the thionyl chloride electroreduction at carbonaceous materials, Elektrokhimiya, 1980, vol. 16, p. 1445.
  3. Povarov, Yu.M. and Sitnina, E.N., Effect of illumination on polarization the lithium electrode characteristics in propylene carbonate solutions, Elektrokhimiya, 1981, vol. 17, p. 633.
  4. Povarov, Yu.M., Beketaeva, L.A., Astakhov, I.I., Surikov, V.V., Moshtev, R., and Puresheva, B.K., Study of lithium passivation in nitromethane solutions of sulfur dioxide by electrochemical and SEM methods, Elektrokhimiya, 1982, vol. 18, p. 1160.
  5. Povarov, Yu.M., Beketaeva, L.A., and Puresheva, B.K., Impedance of lithium electrode in solutions of oxidants, Elektrokhimiya, 1982, vol. 18, p. 1340.
  6. Povarov, Yu.M. and Vorob’eva, I.V., Impedance of lithium electrode in thionyl chloride solutions, Elektrokhimiya, 1982, vol. 18, p. 1693.
  7. Povarov, Yu.M., Beketaeva, L.A., and Vorob’eva, I.V., Impedance of lithium electrode in aprotic organic solvents, Elektrokhimiya, 1983, vol. 19, p. 586.
  8. Kazarinov, V.E. and Bagotzky, V.S. Properties of a passivating film on the surface of lithium electrodes. J. Power Sources. 1987, vol. 20, p. 259.
  9. Alekseeva, L.A., Astakhov, I.I., Popova, S.S., Kiseleva, I.G., and Surikov, V.V., SEM study of aluminum electrode surface in the process of lithium cathodic insertion to aluminum, Elektrokhimiya, 1985, vol. 21, p. 1116.
  10. Popova, S.S., Alekseeva, L.A., Belova, O.V., Petrova, L.N., Kiseleva, I.G., and Kabanov, B.N., Effect of oxide layers on the process of lithium cathodic insertion to aluminum, Elektrokhimiya, 1986, vol. 22, p. 1497.
  11. Nimon, E.S., Churikov, A.V., Senotov, A.A., L’vov, A.L., and Pridatko, I.A., Ionic transport in passive layers at lithium electrode, Dokl. Akad. Nauk SSSR, 1988, vol. 303, p. 1180.
  12. Nimon, E.S., Churikov, A.V., Senotov, A.A., L’vov, A.L., and Chuvashkin, A.N., Space-charge-limited currents in solid-electrolyte surface films, Fiz. Tverd. Tela, 1989, vol. 31, p. 278.
  13. Nimon, E.S., Churikov, A.V., Gamayunova, I.M., and Lvov, A.L., Photoelectrochemistry of lithium, J. Power Sources, 1993, vol. 43, p. 157.
  14. Nimon, E.S., Churikov, A.V., Shirokov, A.V., Lvov, A.L., and Chuvashkin, A.N., Ionic transport in passivating layers on the lithium electrode, J. Power Sources, 1993, vol. 44, p. 365.
  15. Modestov, A.D., Nimon, E.S., Rotenberg, Z.A., and Churikov, A.V., A light-intensity-modulation study of photoelectrochemical behavior of lithium and its alloys, Russ. J. Electrochem., 1996, vol. 32, p. 705.
  16. Nimon, E.S., Churikov, A.V., and Kharkats, Yu.I., Relaxation photocurrent at the electronic emission from lithium into the surface passivating film, J. Electroanal. Chem., 1997, vol. 420, p. 135.
  17. Churikov, A.V., Kharkats, Yu.I., Gamayunova, I.M., Nimon, E.S., and Shirokov, A.V., Diffusion processes at photoemission from lithium into its passivating layer, Electrochim. Acta, 2001, vol. 46, p. 2929.
  18. Bagotzky, V.S. and Skundin, A.M., Fundamental scientific problems related to the development of rechargeable lithium batteries, Russ. J. Electrochem., 1998, vol. 34, p. 654.
  19. Skundin, A.M., Efimov, O.N., and Yarmolenko, O.V., The state-of-the-art and prospects for the development of rechargeable lithium batteries, Russ. Chem. Rev., 2002, vol. 71, p. 329.
  20. Kulova, T.L. and Skundin, A.M., Decreasing irreversible capacity of graphite electrodes in lithium-ion batteries by direct contact of graphite with metallic lithium, Russ. J. Electrochem., 2002, vol. 38, p. 1319.
  21. Churikov, A.V., Volgin, M.A., and Pridatko, K.I., On the determination of kinetic characteristics of lithium intercalation into carbon, Electrochim. Acta, 2002, vol. 47, p. 2857.
  22. Churikov, A.V., Volgin, M.A., Pridatko, K.I., Ivani-shchev, A.V., Gridina, N.A., and L’vov, A.L., Electrochemical Intercalation of Lithium into Carbon: A Relaxation Study, Russ. J. Electrochem., 2003, vol. 39, p. 531.
  23. Churikov, A.V. and Ivanischev, A.V., Application of pulse methods to the determination of the electrochemical characteristics of lithium intercalates, Electrochim. Acta, 2003, vol. 48, p. 3677.
  24. Doyle, M., Newman, J., Gozdz, A.S., Schmutz, C.N., and Tarascon. J.-M., Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells, J. Electrochem. Soc., 1996, vol. 142, p. 1890.
  25. Sandí, G., Winans, R.E., and Carrado, K.A., New Carbon Electrodes for Secondary Lithium Batteries, J. Electrochem. Soc., 1996, vol. 143, p. L95.
  26. Jean, M., Desnoyer, C., Tranchant, A., and Messina, R., Electrochemical and Structural Studies of Petroleum Coke in Carbonate-Based Electrolytes, J. Electrochem. Soc., 1995, vol. 142, p. 2122.
  27. Takami, N., Satoh, A., Hara, M., and Ohsaki, T., Structural and Kinetic Characterization of Lithium Intercalation into Carbon Anodes for Secondary Lithium Batteries, J. Electrochem. Soc., 1995, vol. 142, p. 371.
  28. Takami, N., Satoh, A., Ohsaki, T., and Kanda, M., Large Hysteresis during Lithium Insertion into and Extraction from High-Capacity Disordered Carbons, J. Electrochem. Soc., 1998, vol. 145, p. 478.
  29. Funabiki, A., Inaba, M., Ogumi, Z., Yuasa, S.-I., Otsuji, J., and Tasaka, A., Impedance Study on the Electrochemical Lithium Intercalation into Natural Graphite Powder, J. Electrochem. Soc., 1998, vol. 145, p. 172.
  30. Piao, T., Park, S.-M., Doh, C.-H., and Moon, S.-I., Intercalation of Lithium Ions into Graphite Electrodes Studied by AC Impedance Measurements, J. Electrochem. Soc., 1999, vol. 146, p. 2794.
  31. Chang, Y.-C. and Sohn, H.-J., Electrochemical Impedance Analysis for Lithium Ion Intercalation into Graphitized Carbons, J. Electrochem. Soc., 2000, vol. 147, p. 50.
  32. Chang, Y.-C., Jong, J.-H., and Fey, G.T.-K., Kinetic Characterization of the Electrochemical Intercalation of Lithium Ions into Graphite Electrodes, J. Electrochem. Soc., 2000, vol. 147, p. 2033.
  33. Ong, T.S. and Yang, H., Symmetrical Cell for Electrochemical AC Impedance Studies of Lithium Intercalation into Graphite, Electrochem. Solid St., 2001, vol. 4, p. A89.
  34. Dollé, M., Orsini, F., Gozdz, A.S., and Tarascon, J.-M., Development of Reliable Three-Electrode Impedance Measurements in Plastic Li-Ion Batteries, J. Electrochem. Soc., 2001, vol. 148, p. A851.
  35. Yu, P., Popov, B.N., Ritter, J.A., and White, R.E., Determination of the Lithium Ion Diffusion Coefficient in Graphite, J. Electrochem. Soc., 1999, vol. 146, p. 8.
  36. Nishizawa, M., Hashitani, R., Itoh, T., Matsue, T., and Uchida, I., Measurements of Chemical Diffusion Coefficient of Lithium Ion in Graphitized Mesocarbon Microbeads Using a Microelectrode, Electrochem. Solid St., 1998, vol. 1, p. 10.
  37. Wang, Q., Li, H., Huang, X., and Chen, L., Determination of Chemical Diffusion Coefficient of Lithium Ion in Graphitized Mesocarbon Microbeads with Potential Relaxation Technique, J. Electrochem. Soc., 2001, vol. 148, p. A737.
  38. Umeda, M., Dokko, K., Fujita, Y., Mohamedi, M., Uchida, I., and Selman, J.R., Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: Part I. Graphitized carbon, Electrochim. Acta, 2001, vol. 47, p. 885.
  39. Dokko, K., Fujita, Y., Mohamedi, M., Umeda, M., Uchida, I., and Selman, J.R., Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: Part II. Disordered carbon, Electrochim. Acta, 2001, vol. 47, p. 933.
  40. Xie, J., Imanishi, N., Zhang, T., Hirano, A., Takeda, Y., and Yamamoto, O., Li-ion diffusion kinetics in LiFePO4 thin film prepared by radio frequency magnetron sputtering, Electrochim. Acta, 2009, vol. 54, p. 4631.
  41. Tang, K., Yu, X., Sun, J., Li, H., and Huang, X., Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS, Electrochim. Acta, 2011, vol. 56, p. 4869.
  42. Zhang, S.M., Zhang, J.X., Xu, S.J., Yuan, X.J., and He, B.C., Li-ion diffusivity and electrochemical properties of FePO4 nanoparticles acted directly as cathode materials in lithium ion rechargeable batteries, Electrochim. Acta, 2013, vol. 88, p. 287.
  43. Liu, H., Li, C., Zhang, H.P., Fu, L.J., Wu, Y.P., and Wu, H.Q., Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique, J. Power Sources, 2006, vol. 159, p. 717.
  44. Gao, F. and Tang, Z., Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries, Electrochim. Acta, 2008, vol. 53, p. 5071.
  45. Liu, J., Jiang, R., Wang, X., Huang, T., and Yu, A., The defect chemistry of LiFePO4 prepared by hydrothermal method at different pH values, J. Power Sources, 2009, vol. 194, p. 536.
  46. Li, L., Tang, X., Liu, H., Qu, Y., and Lu, Z., Morphological solution for enhancement of electrochemical kinetic performance of LiFePO4, Electrochim. Acta, 2010, vol. 56, p. 995.
  47. Jiang, Z. and Jiang, Z.-J., Effects of carbon content on the electrochemical performance of LiFePO4/C core/shell nanocomposites fabricated using FePO4/polyaniline as an iron source, J. Alloy. Compd., 2012, vol. 537, p. 308.
  48. Zhao, D., Feng, Y.-L., Wang, Y.-G., and Xia, Y.-Y., Electrochemical performance comparison of LiFePO4 supported by various carbon materials, Electrochim. Acta, 2013, vol. 88, p. 632.
  49. Sun, C.S., Zhou, Z., Xu, Z.G., Wang, D.G., Wei, J.P., Bian, X.K., and Yan, J., Improved high-rate charge/discharge performances of LiFePO4/C via V‑doping, J. Power Sources, 2009, vol. 193, p. 841.
  50. Churikov, A.V., Ivanishchev, A.V., Ivanishcheva, I.A., Sycheva, V.O., Khasanova, N.R., and Antipov, E.V., Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques, Electrochim. Acta, 2010, vol. 55, p. 2939.
  51. Wu, X., Chen, S., He, Z., Ma, M., and Liu, J., Influence of thickness on the properties of solution-derived LiMn2O4 thin films, J. Wuhan. Univ. Technol., 2009, vol. 24, p. 706.
  52. Singh, D., Kim, W.-S., Craciun, V., Hofmann, H., and Singh, R.K., Microstructural and electrochemical properties of lithium manganese oxide thin films grown by pulsed laser deposition, Appl. Surf. Sci., 2002, vol. 197–198, p. 516.
  53. Yamada, O., Ishikawa, M., and Morita, M., Charge/discharge cycling and impedance response of LiMn2O4 electrode in organic electrolyte solutions with different compositions, Electrochim. Acta, 2000, vol. 45, p. 2197.
  54. Deiss, E., Haringer, D., Novak, P., and Haas, O., Modeling of the charge–discharge dynamics of lithium manganese oxide electrodes for lithium-ion batteries, Electrochim. Acta, 2001, vol. 46, p. 4185.
  55. Eftekhari, A., Electrochemical behavior of thin-film LiMn2O4 electrode in aqueous media, Electrochim. Acta, 2001, vol. 47, p. 495.
  56. Cao, F. and Prakash, J., A comparative electrochemical study of LiMn2O4 spinel thin-film and porous laminate, Electrochim. Acta, 2002, vol. 47, p. 1607.
  57. Hjelm, A.-K. and Lindbergh, G., Experimental and theoretical analysis of LiMn2O4 cathodes for use in rechargeable lithium batteries by electrochemical impedance spectroscopy (EIS), Electrochim. Acta, 2002, vol. 47, p. 1747.
  58. Mohamedi, M., Takahashi, D., and Uchida, T., Electrochemical stability of thin film LiMn2O4 cathode in organic electrolyte solutions with different compositions at 55°C, Electrochim. Acta, 2002, vol. 47, p. 3483.
  59. Bang, H.J., Donepudi, V.S., and Prakash, J., Preparation and characterization of partially substituted LiMyMn2 – yO4 (M = Ni, Co, Fe) spinel cathodes for Li-ion batteries, Electrochim. Acta, 2002, vol. 48, p. 443.
  60. Mohamedi, M., Makino, M., Dokko, K., and Uchida, T., Electrochemical investigation of LiNi0.5Mn1.5O4 thin film intercalation electrodes, Electrochim. Acta, 2002, vol. 48, p. 79.
  61. Xiao, L., Guo, Y., Qu, D., Deng, B., Liu, H., and Tang, D., Influence of particle sizes and morphologies on the electrochemical performances of spinel LiMn2O4 cathode materials, J. Power Sources, 2013, vol. 225, p. 286.
  62. Wang, Y.Z., Shao, X., Xu, H.Y., Xie, M., Deng, S.X., Wang, H., Liu, J.B., and Yan, H., Facile synthesis of porous LiMn2O4 spheres as cathode materials for high-power lithium ion batteries, J. Power Sources, 2013, vol. 226, p. 140.
  63. Yi, T.-F., Yin, L.-C., Ma, Y.-Q., Shen, H.-Y., Zhu, Y.-R., and Zhu, R.-S., Lithium-ion insertion kinetics of Nb-doped LiMn2O4 positive-electrode material, Ceram. Int., 2013, vol. 39, p. 4673.
  64. Tang, X.-C., Song, X.-W., Shen, P.-Z., and Jia, D.-Z., Capacity intermittent titration technique (CITT): A novel technique for determination of Li+ solid diffusion coefficient of LiMn2O4, Electrochim. Acta, 2005, vol. 50, p. 5581.
  65. Xie, J., Kohno, K., Matsumura, T., Imanishi, N., Hirano, A., Takeda, Y., and Yamamoto, O., Li-ion diffusion kinetics in LiMn2O4 thin films prepared by pulsed laser deposition, Electrochim. Acta, 2008, vol. 54, p. 376.
  66. Xie, J., Tanaka, T., Imanishi, N., Matsumura, T., Hirano, A., Takeda, Y., and Yamamoto, O., Li-ion transport kinetics in LiMn2O4 thin films prepared by radio frequency magnetron sputtering, J. Power Sources, 2008, vol. 180, p. 576.
  67. Tang, S.B., Lai, M.O., and Lu, L., Study on Li+-ion diffusion in nano-crystalline LiMn2O4 thin film cathode grown by pulsed laser deposition using CV, EIS and PITT techniques, Mater. Chem. Phys., 2008, vol. 111, p. 149.
  68. Ye, S.H., Bo, J.K., Li, C.Z., Cao, J.S., Sun, Q.L., and Wang, Y.L., Improvement of the high-rate discharge capability of phosphate-doped spinel LiMn2O4 by a hydrothermal method, Electrochim. Acta, 2010, vol. 55, p. 2972.
  69. Quan, Z., Ohguchi, S., Kawase, M., Tanimura, H., and Sonoyama, N., Preparation of nanocrystalline LiMn2O4 thin film by electrodeposition method and its electrochemical performance for lithium battery, J. Power Sources, 2013, vol. 244, p. 375.
  70. Manjunatha, H., Mahesh, K.C., Suresh, G.S., and Venkatesha, T.V., The study of lithium ion de-insertion/insertion in LiMn2O4 and determination of kinetic parameters in aqueous Li2SO4 solution using electrochemical impedance spectroscopy, Electrochim. Acta, 2011, vol. 56, p. 1439.
  71. Churikov, A.V., Kachibaya, E.I., Sycheva, V.O., Ivanishcheva, I.A., Imnadze, R.I., Paikidze, T.V., and Ivanishchev, A.V., Electrochemical properties of LiMn2 – yMeyO4 (Me = Cr, Co, Ni) spinels as cathodic materials for lithium-ion batteries, Russ. J. Electrochem., 2009, vol. 45, p. 175.
  72. Yu, A., Kumagai, N., and Yashiro H., Synthesis of pyrochlore tungsten trioxide thin film and electrochemical lithium intercalation, Solid State lonics, 1997, vol. 100, p. 267.
  73. Yu, A., Kumagai, N., Liu, Z., and Lee, J.-Y., Electrochemical lithium intercalation into WO3 and lithium tungstates LixWO3 + x/2 of various structures, J. Solid State Electr., 1998, vol. 2, p. 394.
  74. Avellaneda, C.O. and Bulhoes L.O.S., Intercalation in WO3 and WO3:Li films, Solid State Ionics, 2003, vol. 165, p. 59.
  75. Pyun, S.-I. and Bae, J.-S., Lithium ion transport in r.f.-magnetron sputtered WO3 film as a function of lithium content, J. Alloy Compd., 1996, vol. 245, p. L1.
  76. Kim, J.J., Tryk, D.A., Amemiya, T., Hashimoto, K., and Fujishima, A., Color impedance and electrochemical impedance studies of WO3 thin films: H+ and Li+ transport, J. Electroanal. Chem., 1997, vol. 435, p. 31.
  77. Mattsson, M.S., Li insertion into WO3: introduction of a new electrochemical analysis method and comparison with impedance spectroscopy and the galvanostatic intermittent titration technique, Solid State Ionics, 2000, vol. 131, p. 261.
  78. Lee, S.-H., Cheong, H.M., Tracy, C.E., Mascarenhas, A., Pitts, R., Jorgensen, G., and Deb, S.K., Influence of microstructure on the chemical diffusion of lithium ions in amorphous lithiated tungsten oxide films, Electrochim. Acta, 2001, vol. 46, p. 3415.
  79. Kavan, L., Fattakhova, D., and Krtil, P., Lithium Insertion into Mesoscopic and Single-Crystal TiO2 (Rutile) Electrodes, J. Electrochem. Soc., 1999, vol. 146, p. 1375.
  80. Krtil, P. and Fattakhova, D., Li Insertion into Li–Ti–O Spinels: Voltammetric and Electrochemical Impedance Spectroscopy Study, J. Electrochem. Soc., 2001, vol. 148, A1045.
  81. Kanamura, K., Yuasa, K., and Takehara, Z., Diffusion of lithium in the tioz cathode of a lithium battery, J. Power Sources, 1987, vol. 20, p. 127.
  82. Li, H., Huang, X., and Chen, L., Electrochemical impedance spectroscopy study of SnO and nano-SnO anodes in lithium rechargeable batteries, J. Power Sources, 1999, vol. 81–82, p. 340.
  83. Besenhard, J.O., Wachtler, M., Winter, M., Andreaus, R., Rom, I., and Sitte, W., Kinetics of Li insertion into polycrystalline and nanocrystalline ‘SnSb’ alloys investigated by transient and steady state techniques, J. Power Sources, 1999, vol. 81–82, p. 268.
  84. Levi, M.D. and Aurbach, D., Frumkin intercalation isotherm D a tool for the description of lithium insertion into host materials: a review, Electrochim. Acta, 1999, vol. 45, p. 167.
  85. Levi, M.D., Gamolsky, K., Aurbach, D., Heider, U., and Oesten, R., Determination of the Li-ion chemical diffusion coefficient for the topotactic solid-state reactions occurring via a two-phase or single-phase solid solution pathway, J. Electroanal. Chem., 1999, vol. 477, p. 32.
  86. Levi, M.D., Salitra, G., Markovsky, B., Teller, H., Aurbach, D., Heider, U., and Heider, L., Solid-State Electrochemical Kinetics of Li-Ion Intercalation into Li1 – xCoO2: Simultaneous Application of Electroanalytical Techniques SSCV, PITT, and EIS, J. Electrochem. Soc., 1999, vol. 146, p. 1279.
  87. Levi, M.D., Aurbach, D., and Vorotyntsev, M.A., Interpretation of potential intermittence titration technique experiments for various Li-intercalation electrodes, Condens. Matter Phys., 2002, vol. 5, p. 329.
  88. Vorotyntsev, M.A., Levi, M.D., and Aurbach, D., Spatially Limited Diffusion Coupled with Ohmic Potential Drop and/or Slow Interfacial Exchange: A New Method to Determine the Diffusion Time Constant and External Resistance from Potential, J. Electroanal. Chem., 2004, vol. 572, p. 299.
  89. Levi, M.D., Markevich, E., and Aurbach, D., The Effect of Slow Interfacial Kinetics on the Chronoamperometric Response of Composite Lithiated Graphite Electrodes and on the Calculation of the Chemical Diffusion Coefficient of Li-Ions in Graphite, J. Phys. Chem. B, 2005, vol. 109, p. 7420.
  90. Levi, M.D., Aurbach, D., and Maier, J., Electrochemically driven first-order phase transitions caused by elastic responses of ion-insertion electrodes under external kinetic control, J. Electroanal. Chem., 2008, vol. 624, p. 251.
  91. Montella C., EIS study of hydrogen insertion under restricted diffusion conditions: I. Two-step insertion reaction, J. Electroanal. Chem., 2001, vol. 497, p. 3.
  92. Montella, C., Discussion of the potential step method for the determination of the diffusion coefficients of guest species in host materials Part I. Influence of charge transfer kinetics and ohmic potential drop, J. Electroanal. Chem., 2002, vol. 518, p. 61.
  93. Montella, C., Discussion of three models used for the investigation of insertion/extraction processes by the potential step chronoamperometry technique, Electrochim. Acta, 2005, vol. 50, p. 3746.
  94. Montella, C., Apparent diffusion coefficient of intercalated species measured with PITT. A simple formulation, Electrochim. Acta, 2006, vol. 51, p. 3102.
  95. Li, J., Yang, F., Xiao, X., Verbrugge, M.W., and Cheng, Y.-T., Potentiostatic intermittent titration technique (PITT) for spherical particles with finite interfacial kinetics, Electrochim. Acta, 2012, vol. 75, p. 56.
  96. Li, J., Xiao, X., Yang, F., Verbrugge, M.W., and Cheng, Y.-T., Potentiostatic Intermittent Titration Technique for Electrodes Governed by Diffusion and Interfacial Reaction, J. Phys. Chem. C, 2012, vol. 116, p. 1472.
  97. Churikov, A.V., Pridatko, K.I., Ivanishchev, A.V., Ivanishcheva, I.A., Gamayunova, I.M., Zapsis, K.V., and Sycheva, V.O., Impedance Spectroscopy of Lithium–Tin Film Electrodes, Russ. J. Electrochem., 2008, vol. 44, p. 550.
  98. Churikov, A.V., Zobenkova, V.A., and Pridatko, K.I., Lithium Intercalation into Titanium Dioxide Films from a Propylene Carbonate Solution, Russ. J. Electrochem., 2004, vol. 40, p. 63.
  99. Churikov, A.V., Ivanishchev, A.V., Ivanishcheva, I.A., Zapsis, K.V., Gamayunova, I.M., and Sycheva, V.O., Kinetics of Electrochemical Lithium Intercalation into Thin Tungsten(VI) Oxide Layers, Russ. J. Electrochem., 2008, vol. 44, p. 530.
  100. Volgin, M.A., Churikov, A.V., Konoplyantseva, N.A., Gridina, N.A., L’vov, A.L., Electrochemical intercalation of lithium into thin pyrocarbon layers, Russ. J. Electrochem., 1998, vol. 34, p. 681.
  101. Suzuki, T. WH, YM, Graphite electrode, United States Patent 5,169,508, Dec 8, 1992.
  102. Ivanishchev, A.V., Churikov, A.V., Ivanishcheva, I.A., Zapsis, K.V., and Gamayunova, I.M., Impedance Spectroscopy of Lithium–Carbon Electrodes, Russ. J. Electrochem., 2008, vol. 44, p. 510.
  103. Kachibaya, E.I., Imnadze, R.A., Paikidze, T.V., and Akhvlediani, R.A., Cathodic materials for lithium-ion batteries based on spinels LixMn2 – yMeyO4: Synthesis, phase composition, and structure of LixMn2 – yCryO4 at x = 1.0–1.2 and y = 0–0.5, Russ. J. Electrochem., 2006, vol. 42, p. 1224.
  104. Churikov, A.V., Ivanishchev, A.V., Ushakov, A.V., Gamayunova, I.M., and Leenson, I.A., Thermodynamics of LiFePO4 Solid-Phase Synthesis Using Iron(II) Oxalate and Ammonium Dihydrophosphate as Precursors, J. Chem. Eng. Data, 2013, vol. 58, p. 1747.
  105. Churikov, A., Gribov, A., Bobyl, A., Kamzin, A., and Terukov, E., Mechanism of LiFePO4 solid-phase synthesis using iron(II) oxalate and ammonium dihydrophosphate as precursors, Ionics, 2014, vol. 20, p. 1.
  106. Ivanishchev, A.V., Churikov, A.V., Ivanishcheva, I.A., Ushakov, A.V., Sneha, M.J., Babbar, P., and Dixit, A., Models of lithium transport as applied to determination of diffusion characteristics of intercalation electrodes, Russ. J. Electrochem., 2017, vol. 53, p. 706.
  107. Ivanishchev, A.V., Churikov, A.V., Akmaev, A.S., Ushakov, A.V., Ivanishcheva, I.A., Gamayunova, I.M., Sneha, M.J., and Dixit, A., The synthesis, structure, and electrochemical properties of Li2FeSiO4-based lithium-accumulating electrode material, Russ. J. Electrochem., 2017, vol. 53, p. 302.
  108. Ivanishchev, A.V., Churikov, A.V., and Ushakov, A.V., Lithium transport processes in electrodes on the basis of Li3V2(PO4)3 by constant current chronopotentiometry, cyclic voltammetry and pulse chronoamperometry, Electrochim. Acta, 2014, vol. 122, p. 187.
  109. Ivanishchev, A.V., Churikov, A.V., Ivanishcheva, I.A., and Ushakov, A.V., Lithium diffusion in Li3V2(PO4)3-based electrodes: a joint analysis of electrochemical impedance, cyclic voltammetry, pulse chronoamperometry, and chronopotentiometry data, Ionics, 2016, vol. 22, p. 483.
  110. Ivanishchev, A.V., Ushakov, A.V., Ivanishcheva, I.A., Churikov, A.V., Mironov, A.V., Fedotov, S.S., Khasanova, N.R., and Antipov, E.V., Structural and electrochemical study of fast Li diffusion in Li3V2(PO4)3-based electrode material, Electrochim. Acta, 2017, vol. 230, p. 479.
  111. Ivanishchev, A.V., Bobrikov, I.A., Ivanishcheva, I.A., and Ivanshina, O.Y., Study of structural and electrochemical characteristics of LiNi0.33Mn0.33Co0.33O2 electrode at lithium content variation, J. Electroanal. Chem., 2018, vol. 821, p. 140.
  112. Galus, Z., Teoretyczne podstawy elektroanalizy chemicznej: polarografia, chronowoltamperometria, chronopotencjometria, metoda wirującego dysku, Państwowe Wydawnictwo Naukowe, 1971.
  113. Weppner, W. and Huggins, R.A., Determination of the Kinetic Parameters of Mixed-Conducting Electrodes and Application to the System Li3Sb, J. Electrochem. Soc., 1977, vol. 124, p. 1569.
  114. Dathar, G.K.P., Sheppard, D., Stevenson, K.J., and Henkelman, G., Calculations of Li-Ion Diffusion in Olivine Phosphates, Chem. Mater., 2011, vol. 23, p. 4032.
  115. Arora, P., Doyle, M., Gozdz, A.S., White, R.E., and Newman, J., Comparison between computer simulations and experimental data for high-rate discharges of plastic lithium-ion batteries, J. Power Sources, 2000, vol. 88, p. 219.