Specific Features in the Low-Temperature Performance of Electrodes of Lithium-Ion Battery

A. A. Kuz’minaA. A. Kuz’mina, T. L. KulovaT. L. Kulova, E. K. TuseevaE. K. Tuseeva, E. V. ChirkovaE. V. Chirkova
Российский электрохимический журнал
Abstract / Full Text

The charging and discharge characteristics of electrodes based on LiNi0.8Co0.15Al0.05O2 (NCA) and Li4Ti5O12 (LTO) are studied in LiClO4 solutions in a mixture of propylene carbonate and dimethoxyethane at the temperature from –45 to +60°С. For both materials, the discharge capacity decreases with the current increase and its dependence cannot be described by the Peukert equation. The decrease in the temperature results also in the increase in polarization, the effective energy of activation being 52 kJ/mol on the NCA electrode and only 23 kJ/mol on the LTO electrode. The possibility of using batteries based on the NCA–LTO system at the temperature down to –40°С is confirmed.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, RussiaA. A. Kuz’mina, T. L. Kulova, E. K. Tuseeva & E. V. Chirkova
  • National Research University (MPEI), 111250, Moscow, RussiaE. V. Chirkova
  1. Liao, X.-Z., Ma, Z.-F., Gong, Q., He, Y.-S., Pei, L., and Zeng, L.-J., Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte, Electrochem. Commun., 2008, vol. 10, p. 691. https://doi.org/10.1016/j.elecom.2008.02.017
  2. Huang, C.K., Sakamoto, J.S., Wolfenstine, J., and Surampudi, S., The limits of low-temperature performance of Li-ion cells, J. Electrochem. Soc., 2000, vol. 147, p. 2893. https://doi.org/10.1149/1.1393622
  3. Smart, M., Ratnakumar, B., and Surampudi, S., Electrolytes for low-temperature lithium batteries based on ternary mixtures of aliphatic carbonates, J. Electrochem. Soc., 1999, vol. 146, p. 486. https://doi.org/10.1149/1.1391633
  4. Plichta, E.J. and Behl, W.K., A low-temperature electrolyte for lithium and lithium-ion batteries, J. Power Sources, 2000, vol. 88, p. 192. https://doi.org/10.1016/S0378-7753(00)00367-0
  5. Zhang, S.S., Xu, K., and Jow, T.R., Electrochemical impedance study on the low temperature of Li-ion batteries, Electrochem. Acta, 2004, vol. 49, p. 1057. https://doi.org/10.1016/j.electacta.2003.10.016
  6. Nagasubramanian, G., Electrical characteristics of 18650 Li-ion cells at low temperatures, J. Appl. Electrochem., 2001, vol. 31, p. 99. https://doi.org/10.1023/A:1004113825283
  7. Chunsheng, W., Appleby, A.J., and Little, F.E., Low-temperature characterization of lithium-ion carbon anodes via microperturbation measurement, J. Electrochem. Soc., 2002, vol. 149, p. A754. https://doi.org/10.1149/1.1474427
  8. Zhang, S.S., Xu, K., and Jow, T.R., Enhanced performance of Li-ion cell with LiBF4-PC based electrolyte by addition of small amount of LiBOB, J. Power Sources, 2006, vol. 156, p. 629. https://doi.org/10.1016/j.jpowsour.2005.04.023
  9. Lin, H., Chua, D., Salomon, M., Shiao, H.C., Hendrickson, M., Plichta E., and Slane, S., Low-temperature behavior of Li-ion cells, Electrochem. Solid State Lett., 2001, vol. 4, p. A71. https://doi.org/10.1149/1.1368736
  10. Ma, M., Tu, J., Yuan, Y., Wang, X., Li, K., Mao F., and Zeng, Z., Electrochemical performance of ZnO nanoplates as anode materials for Ni/Zn secondary batteries, J. Power Sources, 2008, vol. 179, p. 395. https://doi.org/10.1016/j.jpowsour.2008.01.026
  11. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 2004, vol. 104, p. 4303. https://doi.org/10.1021/cr030203g
  12. Yamaki, J.-I., Tobishima, S.-I., Hayashi, K., Saito, K., Nemoto, Y., and Arakawa, M., A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte, J. Power Sources, 1998, vol. 74, p. 219. https://doi.org/10.1016/S0378-7753(98)00067-6
  13. Majumder, S.B., Nieto, S., and Katiyar, R.S., Synthesis and electrochemical properties of LiNi0.80(Co0.20 – xAlx)O2 (x = 0.0 and 0.05) cathodes for Li ion rechargeable batteries, J. Power Sources, 2006, vol. 154, p. 262. https://doi.org/10.1016/j.jpowsour.2005.03.186
  14. Weaving, J., Coowar, F., Teagle, D., Cullen, J., Dass, V., Bindin, P., Green, R., and Macklin, W., Development of high energy density Li-ion batteries based on LiNi1 ‒ x – yCoxAlyO2, J. Power Sources, 2001, vols. 97–98, p. 733. https://doi.org/10.1016/S0378-7753(01)00700-5
  15. Lee, K.K., Yoon, W.S., Kim, K.B., Lee, K.Y., and Hong, S.T., Characterization of LiNi0.85Co0.10M0.05O2 (M = Al, Fe) as a cathode material for lithium secondary batteries, J. Power Sources, 2001, vol. 97–98, p. 308. https://doi.org/10.1016/S0378-7753(01)00516-X
  16. Kostecki, R. and McLarnon, F., Local-probe studies of degradation of composite LiNi0.8Co0.15Al0.05O2 cathodes in high-power lithium-ion cells, Electrochem. Solid-State Lett., 2004, vol. 7, p. A380. https://doi.org/10.1149/1.1793771
  17. Bang, H.J., Joachin, H., Yang, H., Amine, K., and Prakasha, J., Contribution of the structural changes of LiNi0.8Co0.15Al0.05O2 cathodes on the exothermic reactions in Li-ion cells, J. Electrochem. Soc., 2006, vol. 153, p. A731. https://doi.org/10.1149/1.2171828
  18. Tuseeva, E.K., Kulova, T.L., and Skundin, A.M., Temperature effect on the behavior of a lithium titanate electrode, Russ. J. Electrochem., 2018, vol. 54, p. 1186. https://doi.org/10.1134/S1023193518140082
  19. Loghavi, M.M., Mohammadi-Manesh, H., and Eqra, R., LiNi0.8Co0.15Al0.05O2 coated by chromium oxide as a cathode material for lithium-ion batteries, J. Solid State Electrochem., 2019, vol. 23, p. 2569. https://doi.org/10.1007/s10008-019-04342-1
  20. Luo, W., Liu, L., Li, X., Yu, J., and Fang, C., Templated assembly of LiNi0.8Co0.15Al0.05O2/graphene nano composite with high rate capability and long-term cyclability for lithium ion battery, J. Alloys Comp., 2019, vol. 810, article no. 151786. https://doi.org/10.1016/j.jallcom.2019.151786
  21. Liang, M., Sun, Y., Song, D., Shi, X., Han, Y., Zhang, H., and Zhang, L., nSuperior electrochemical performance of  quasi-concentration-gradient LiNi0.8Co0.15Al0.05O2 cathode material synthesized with multi-shell precursor and new aluminum source, Electrochim. Acta, 2019, vol. 300,p. 426. https://doi.org/10.1016/j.electacta.2019.01.125
  22. Kulova, T.L., Effect of temperature on reversible and irreversible processes during lithium intercalation in graphite, Russ. J. Electrochem., 2004, vol. 40, p. 1052. https://doi.org/10.1023/B:RUEL.0000046490.73990.c3
  23. Tusseeva, E.K., Kulova, T.L., Skundin, A.M., Galeeva, A.K., and Kurbatov, A.P., Temperature effects on the behavior of lithium iron phosphate electrodes, Russ. J. Electrochem., 2019, vol. 55, p. 194. https://doi.org/10.1134/S1023193519020149