Examples



mdbootstrap.com



 
Статья
2021

Synthesis of New Diaryl(hetaryl)ethylphosphonic Acids


Yu. M. SadykovaYu. M. Sadykova, A. V. ZalaltdinovaA. V. Zalaltdinova, А. K. SmailovА. K. Smailov, А. R. BurilovА. R. Burilov, М. А. PudovikМ. А. Pudovik
Российский журнал общей химии
https://doi.org/10.1134/S1070363221070215
Abstract / Full Text

An original, new method for the synthesis of previously unknown diaryl(hetaryl)ethylphosphonic acids containing pharmacophoric fragments was developed as a result of the acid-catalyzed reaction of (2-ethoxyvinyl)phosphonic dichloride with heterocyclic compounds such as 4-hydroxy-6-methyl-2-pyrone, 4-hydroxycoumarin, and also thymol and carvacrol containing a hydroxyl group. Composition and structure of all diaryl(hetaryl)ethylphosphonic acids were confirmed according to 1H, 13С and 31P NMR, IR spectroscopy, mass spectrometry and elemental analysis data.

Author information
  • Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”, 420088, Kazan, RussiaYu. M. Sadykova, А. R. Burilov & М. А. Pudovik
  • Kazan National Research Technological University, 420015, Kazan, RussiaA. V. Zalaltdinova & А. K. Smailov
References
  1. Gazizov, A.S., Burilov, A.R., Pudovik, M.A., and Sinyashin, O.G., Russ. Chem. Rev., 2017, vol. 86, p. 75. https://doi.org/10.1070/RCR4622
  2. Smolobochkin, A.V., Gazizov, A.S., Burilov, A.R., Pudovik, M.A., and Sinyashin, O.G., Russ. Chem. Rev., 2019, vol. 88, p. 1104. https://doi.org/10.1070/RCR4891
  3. Kim, C., Jeong, S., Lee, H.W., Kim, Y.K., and Yoon, S.S., Mol. Cryst. Liq. Cryst., 2017, vol. 651, p. 9. https://doi.org/10.1080/15421406.2017.1338486
  4. Mao, G., Orita, A., Fenenko, L., Yahiro, M., Adachi, C., and Otera, J., Mater. Chem. Phys., 2009, vol. 115, p. 378. https://doi.org/10.1016/j.matchemphys.2008.12.015
  5. Chiang, C.-L., Shu, C.-F., and Chen, C.-T., Org. Lett., 2005, vol. 7, p. 3717. https://doi.org/10.1021/ol0513591
  6. Motoyoshiya, J., Ikeda, T., Tsuboi, S., Kusaura, T., Takeuchi, Y., Hayashi, S., Yoshioka, S., Takaguchi, Y., and Aoyama, H., J. Org. Chem., 2003, vol. 68, p. 5950. https://doi.org/10.1021/jo030046l
  7. Mucha, A., Kafarski, P., and Berlicki, Ł., J. Med. Chem., 2011, vol. 54, p. 5955. https://doi.org/10.1021/jm200587f
  8. Baig, M.Z.K., Pallikonda, G., Trivedi, P., Tulichala, R.N.P., Ghosh, B., and Chakravarty, M., Chem. Select., 2016, vol. 1, p. 4332. https://doi.org/10.1002/slct.201600978
  9. Palchaudhuri, R., Nesterenko, V., and Hergenrother, P., J. Am. Chem. Soc., 2008, vol. 130, p. 10274. https://doi.org/10.1021/ja8020999
  10. Horsman, G.P. and Zechel, D.L., Chem. Rev., 2017, vol. 117, p. 5704. https://doi.org/10.1021/acs.chemrev.6b00536
  11. Demmer, C.S., Krogsgaard-Larsen, N., and Bunch, L., Chem. Rev., 2011, vol. 111, p. 7981. https://doi.org/10.1021/cr2002646
  12. Rajeshwaran, G.G., Nandakumar, M., Sureshbabu, R., and Mohanakrishnan, A.K., Org. Lett., 2011, vol. 13, p. 1270. https://doi.org/10.1021/ol1029436
  13. Huang, H. and Kang, J.Y., Org. Lett., 2017, vol. 19, p. 5988. https://doi.org/10.1021/acs.orglett.7b03019
  14. Prasad, S.S., Singh, D.K., and Kim, I., J. Org. Chem., 2019, vol. 84, p. 6323. https://doi.org/10.1021/acs.joc.9b00668
  15. Golitsin, S.M., Beletskaya, I.P., and Titanyuk, I.D., Synthesis, 2020, vol. 52, p. 775. https://doi.org/10.1055/s-0039-1690758
  16. Knyazeva, I.R., Burilov, A.R., Pudovik, M.A., and Habicher, W.D., Russ. Chem. Rev., 2013, vol. 82, p. 150. https://doi.org/10.1070/RC2013v082n02ABEH004296
  17. Sadykova, Yu.M., Knyazeva, I.R., Burilov, A.R., Pudovik, M.A., Dobrynin, A.B., Litvinov, I.A., and Sinyashin, O.G., Heteroatom Chem., 2011, vol. 22, no. 1, p. 1. https://doi.org/10.1002/hc20646
  18. Sadykova, Yu.M., Dalmatova, N.V., Voronina, Yu.K., Burilov, A.R., Pudovik, M.A., and Sinyashin, O.G., Heteroatom Chem., 2014, vol. 25, no. 1, p. 55. https://doi.org/10.1002/hc21135