Статья
2019

Effect of Cl and SO42– Ions on Electrodeposition of Cobalt from Acidic Gluconate Solutions


 Ewa Rudnik Ewa Rudnik ,  Namuun Dashbold Namuun Dashbold
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519120140
Abstract / Full Text

A role of anions in potentiostatic electrodeposition of cobalt from acidic gluconate solutions was investigated. Equilibrium distribution of soluble species in the solutions was calculated and compared with absorption spectra. Cyclic voltammetry and potentiostatic measurements confirmed that cathodic process was inhibited mainly by free sulfate ions. Improved buffer capacity of gluconate baths by addition of sulfate ions protected against contamination of metal deposits by products of cobalt salt hydrolysis. Mathematical models of metal nucleation were tested indicating progressive mode responsible for the formation of the metal phase. Diffusion coefficients of cobalt species were also calculated using various approaches. Thickness, morphology and structure of cobalt deposits as well as cathodic current efficiency were also discussed.

Author information
  • AGH University of Science and Technology, Faculty of Non-Ferrous Metals, 30-059, Cracow, Poland

    Ewa Rudnik &  Namuun Dashbold

References
  1. Garciá-Torres, L., Gómez, E., and Vallés, E., Modulation of magnetic and structural properties of cobalt thin films by means of electrodeposition, J. Appl. Electrochem., 2009, vol. 39, p. 233.
  2. Szmaja, W., Kozłowski, W., Polański, K., Balcerski, J., Cichomski, M., Grobelny, J., Zieliński, M., and Miękoś, E., Investigation of trick cobalt films electrodeposited on gold substrates, Chem. Phys. Lett., 2012, vol. 542, p. 117.
  3. Caffarena, V.R., Guimaraes, A.P., Folly, W.S.D., Silva, E.M., and Capitaneo, J.L., Magnetic behavior of electrodeposited cobalt nanowires using different electrolytic bath acidities, Mat. Chem. Phys., 2008, vol. 107, p. 297.
  4. Ezhilselvi, V., Seenivasan, H., Bera, P., and Anandan, C., Characterization and corrosion behavior of Co and Co‒P coatings electrodeposited from chloride bath, RSC Adv., 2014, vol. 4, p. 46293.
  5. Amadeh, A. and Ebadpour, R., Effect of cobalt content on wear and corrosion behaviors of electrodeposited Ni–Co/WC nano-composite coatings, J. Nanosci. Nanotechnol., 2013, vol. 13, p. 1360.
  6. Seenivasan, H., Bera, P., Balaraju, J.N., and Rajam, K.S., XPS characterization and microhardness of heat treated Co–W coatings electrodeposited with gluconate bath, Adv. Sci. Foc., 2013, vol. 1, no. 3, p. 262.
  7. Cui, C.Q., Jiang, S.P., and Tseung, A.C.C., XPS characterization and microhardness of heat treated Co–W coatings electrodeposited with gluconate bath, J. Electrochem. Soc., 1990, vol. 137, no. 11, p. 3418.
  8. Kongstein, O.E., Haareberg, G.M., and Thonstad, J., Current efficiency and kinetics of cobalt electrodeposition in acid chloride solutions. Part I: the influence of current density, pH and temperature, J. Appl. Electrochem., 2007, vol. 37, p. 669.
  9. Matsushima, J.T., Trivinho-Strixino, F., and Pereira, E.C., Investigation of cobalt deposition using the electrochemical quartz microbalance, Electrochim. Acta, 2006, vol. 51, p. 1960.
  10. Flis-Kabulska, I., Electrodeposition of cobalt on gold during voltammetric cycling, J. Appl. Electrochem., 2006, vol. 36, p. 131.
  11. Santos, J.S., Matos, R., Trivinho-Strixino, F., and Pereira, E.C., Effect of temperature on Co electrodeposition in the presence of boric acid, Electrochim. Acta, 2007, vol. 53, p. 644.
  12. Kongstein, O.E., Haareberg, G.M., and Thonstad, J., Current efficiency and kinetics of cobalt electrodeposition in acid chloride solutions. Part II: the influence of chloride and sulphate concentrations, J. Appl. Electrochem., 2007, vol. 37, p. 675.
  13. Mendoza-Huizar, L.H. and Rios-Reyes, C.H., Cobalt electrodeposition onto polycrystalline gold from ammoniacal solutions, Cent. Eur. J. Chem., 2013, vol. 11, no. 8, p. 1381.
  14. Grujicic, D. and Pesic, B., Electrochemical and AFM study of cobalt nucleation mechanisms on glassy carbon from ammonium sulfate solutions, Electrochim. Acta, 2004, vol. 49, p. 4719.
  15. Frank, A.C. and Sumodjo, P.T.A., Electrodeposition of cobalt from citrate containing baths, Electrochim. Acta, 2014, vol. 132, p. 75.
  16. El Rehim, S.S.A., Ibrahim, M.A.M., and Dankeria, M.M., Electrodeposition of cobalt from gluconate electrolyte, J. Appl. Electrochem., 2002, vol. 32, p. 1019.
  17. Ibrahim, M.A.M. and Al Radadi, R.M., Nanocrystalline cobalt coatings on copper substrates by electrodeposition from complexing acidic glycine baths, Mater. Chem. Phys., 2015, vol. 151, p. 222.
  18. Saha, S., Sultana, S., Islam, M.M., Rahman, M.M., Mollah, M.Y.A., and Susan, M.A.B.H., Electrodeposition of cobalt with tunable morphology from reverse micellar solution, Ionics, 2014, vol. 20, p. 1175.
  19. Patnaik, P., Padhy, S.K., Tripathy, B.C., Bhattacharya, I.N., and Paramguru, R.K., Electrodeposition of cobalt from aqueous sulphate solutions in the presence of tetra ethyl ammonium bromide, Trans. Nonferr. Met. Soc. China, 2015, vol. 25, p. 2047.
  20. Patnaik, P., Tripathy, B.C., Bhattacharya, I.N., Paramguru, R.K., and Mishra, B.K., Effect of tetra propyl ammonium bromide during cobalt electrodeposition from acidic sulfate solutions, Metall. Mater. Trans. B, 2015, vol. 46, p. 1252.
  21. Matsushima, H., Ispas, A., Bund, A., Plieth, W., and Fukunaka, Y., Magnetic field effects on microstructural variation of electrodeposited cobalt films, J. Solid State Electrochem., 2007, vol. 11, p. 737.
  22. Krause, A., Uhlemann, M., Gebert, A., and Schultz, L., A study of nucleation, growth, texture ad phase formation of electrodeposited cobalt layers and the influence of magnetic fields, Thin Solid Film, 2006, vol. 515, p. 1694.
  23. Mendoza-Huizar, L.H., Robles, J., and Palomar-Pardavé, M., Nucleation and growth of cobalt onto different substrates. Part I. Underpotential deposition onto a gold electrode, J. Electroanal. Chem., 2002, vol. 521, p. 95.
  24. Palomar-Pardavé, M., Scharifker, B.R., Arce, E.M., and Romero-Romo, M., Nucleation and diffusion-controlled growth of electroactive centers. Reduction of protons during cobalt electrodeposition, Electrochim. Acta, 2005, vol. 50, p. 4736.
  25. Correira, A.N., Machado, S.A.S., and Avaca, L.A., Direct observation of overlapping of growth centers in Ni and Co electrocrystallization using atomic force microscopy, J. Electroanal. Chem., 2000, vol. 488, p. 110.
  26. Vicenzo, A. and Cavalotti, P.L., Growth modes of electrodeposited cobalt, Electrochim. Acta, 2004, vol. 49, p. 4079.
  27. Rios-Reyes, C.H., Granados-Neri, M., and Mendoza-Huizar, L.H., Kinetic study of the cobalt electrodeposition onto glassy carbon electrode from ammonium sulfate solutions, Quim. Nova, 2009, vol. 32, no. 9, p. 2382.
  28. Sahari, A., Azizi, A., Fenineche, N., Schmerber, G., and Dinia, A., Electrochemical study of cobalt nucleation mechanisms on different metallic substrates, Mater. Chem. Phys., 2008, vol. 108, p. 345.
  29. Floate, S., Hyde, M., and Compton, R.G., Electrochemical and AFM studies of the electrodeposition of cobalt on glassy carbon: an analysis of the effect of ultrasound, J. Electroanal. Chem., 2002, vol. 532, p. 49.
  30. Khelladi, M.R., Mentar, L., Boubatra, M., Azizi, A., and Kahoul, A., Early stages of cobalt electrodeposition on FTO and n-type Si substrates in sulfate medium, Mater. Chem. Phys., 2010, vol. 122, p. 449.
  31. Mishra, K.G., Singh, P., and Muir, D., Nucleation during electrocrystallization of cobalt on glassy carbon (GC), J. Appl. Chem., 2002, vol. 32, p. 1391.
  32. Soto, A.B., Arce, E.M., Palomar-Pardavé, M., and Gonzalez, I., Electrochemical nucleation of cobalt on glassy carbon electrode from ammonium chloride solutions, Electrochim. Acta, 1996, vol. 41, no. 6, p. 2647.
  33. Manhabosco, T.M., Englert, G., and Müller, I.L., Characterization of cobalt thin films electrodeposition onto silicon with two different resistivities, Surf. Coat. Technol., 2006, vol. 200, p. 5203.
  34. Sharifker, B.R. and Hills, G., Theoretical and experimental studies of multiple nucleation, Electrochim. Acta, 1983, vol. 28, no. 7, p. 879.
  35. Rudnik, E., Wojnicki, M., and Włoch, G., Effect of gluconate addition on the electrodeposition of nickel from acidic baths, Surf. Coat. Technol., 2012, vol. 207, p. 375.
  36. Rudnik, E., Effect of anions on the electrodeposition of tin from acidic gluconate baths, Ionics, 2013, vol. 19, no. 7, p. 1047.
  37. Rudnik, E., Effect of gluconate ions on electroreduction phenomena during manganese deposition on glassy carbon in acidic chloride and sulfate solutions, J. Electroanal. Chem., 2015, vol. 741, p. 20.
  38. Rudnik, E., The influence of sulfate ions on the electrodeposition of Ni–Sn alloys from acidic chloride-gluconate baths, J. Electroanal. Chem., 2014, vol. 726, p. 97.
  39. Rudnik, E. and Wloch, G., The influence of sodium gluconate on nickel and manganese codeposition from acidic chloride-sulfate baths, Ionics, 2014, vol. 20, no. 12, p. 1747.
  40. The UPAC stability constants database, Academic Software and IUMAC, 1992–2000.
  41. Wagemann, R., Thermodynamic data base for the aquatic chemical speciation software package MACS80 (Version 5/1990-VAX and MS-DOS). 3rd ed., Can. Tech. Rep. Fish. Aquat. Sci., 1991.
  42. Lee, M-S. and Oh, Y-J., Estimation of thermodynamic properties and ionic equilibria of cobalt chloride solution at 298 K, Mater. Trans., 2004, vol. 45, no. 4, p. 1317.
  43. Escandar, G.M., Sala, L.F., and Sierra, M.G., Complexes of cobalt(II) and nickel(II) with D-aldonic and D-alduronic acids in aqueous solution, Polyhed., 1994, vol. 13, no. 1, p. 143.
  44. Ashton, F. and Pickering, W.F., Cobalt(II) gluconate complexes, Aust. J. Chem., 1970, vol. 23, no. 7, p. 1367.
  45. Greef, R., Peat, R., Peter, L.M., Pletcher, D., and Robinson, J., Instrumental Methods in Electrochemistry, Chichester: Ellis Horwood Ltd., 1985.
  46. Casella, I.G. and Di Fonzo, D.A., Anodic electrodeposition of cobalt oxides from an alkaline bath containing Co-gluconate complexes on glassy carbon. An electroanalytical investigation, Electrochim. Acta, 2011, vol. 56, p. 7536.
  47. Budevski, E., Staikov, G., and Lorenz, W.J., Electrochemical Phase Formation and Growth, Weinhheim: VCH, 1996.