Статья
2018

High Temperature Stability of Hydrated Ion Pairs Na+Cl(H2O) N under Conditions of a Flat Nanopore


S. V. Shevkunov S. V. Shevkunov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518020064
Abstract / Full Text

The high-temperature stability of hydrated ion pairs under conditions of a nanoscopic flat pore with hydrophobic structureless walls is studied by computer simulations. The limited space of the nanopore stimulates dissociation of the contact ion pair (CIP) with its transition to the state of the solvent-separated ion pair (SSIP); moreover, the ion pair demonstrates a high degree of stability on heating. The inverse temperature effect where the heating renders a moderate consolidating effect on the state of a hydrated contact ion pair is observed: when heated to the electrolyte boiling point, the free energy barrier that separates the CIP and SSIP states shifts by 2 molecules towards the larger hydration shells. On the pressure scale, the boundary between CIP and SSIP states shifts at the same rate as the saturating pressure with the increase in the temperature.

Author information
  • Peter-the-Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia

    S. V. Shevkunov

References
  1. Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J., and Mayes, A.M., Science and technology for water purification in the coming decades, Nature, 2008, vol. 452, p. 301.
  2. Konatham, D., Yu, J., Ho, T.A., et al., Simulation insights for graphene based water desalination membranes, Langmuir, 2013, vol. 29, p. 11884.
  3. Gherasim, C.V., Cuhorka, J., and Mikulasek, P., Analysis of lead(II) retention from single salt and binary aqueous solutions by a polyamide nanofiltration membrane: experimental results and modeling, J. Membr. Sci., 2013, vol. 436, p. 132.
  4. Richards, L.A., Richards, B.S., Corry, B., et al., Experimental energy barriers to anions transporting through nanofiltration membranes, Environ. Sci. Technol., 2013, vol. 47, p. 1968.
  5. Gouaux, E. and Mackinnon, R., Principles of selective ion transport in channels and pumps, Science, 2005, vol. 310, p. 1461.
  6. Aryal, P., Sansom, M.S.P., and Tucker, S.J., Hydrophobic gating in ion channels, J. Mol. Biol., 2015, vol. 427, p. 121.
  7. Wei, Y.-J., Xia, D.-H., and Song, Sh.-Zh., Detection of SCC of 304 NG stainless steel in an acidic NaCl solution using electrochemical noise based on chaos and wavelet analysis, Russ. J. Electrochem., 2016, vol. 52, p. 560.
  8. Gryzunova, N.N., Denisova, A.G., Yasnikov, I.S., and Vikarchuk, A.A., Preparation of materials with a developed surface by thermal treatment and chemical etching of electrodeposited icosahedral small copper particles, Russ. J. Electrochem., 2015, vol. 51, p. 1176.
  9. Chmiola, J., Yushin, G., Gogotsi, Y., et al., Anomalous increase in carbon capacitance at pore sizes less than 1 nm, Science, 2006, vol. 313, p. 1760.
  10. Yu, Z.N., Tetard, L., Zhai, L., et al., Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions, Energy Environ. Sci., 2015, vol. 8, p. 702.
  11. Cannon, J.J., Tang, D., Hur, N., et al., Competitive entry of sodium and potassium into nanoscale pores, J. Phys. Chem. B., 2010, vol. 114, p. 12252.
  12. Chen, H.Y. and Ruckenstein, E., Nanomembrane containing a nanopore in an electrolyte solution: a molecular dynamics approach, J. Phys. Chem. Lett., 2014, vol. 5, p. 2979.
  13. Haria, N.R. and Lorenz, C.D., Atomistic description of pressure-driven flow of aqueous salt solutions through charged silica nanopores, J. Phys. Chem. C, 2015, vol. 119, p. 12298.
  14. Ho, M.C., Casciola, M., Levine, Z.A., et al., Molecular dynamics simulations of ion conductance in field-stabilized nanoscale lipid electropores, J. Phys. Chem. B, 2013, vol. 117, p. 11633.
  15. Richards, L.A., Schafer, A.I., Richards, B.S., et al., Quantifying barriers to monovalent anion transport in narrow non-polar pores, Phys. Chem. Chem. Phys., 2012, vol. 14, p. 11633.
  16. Shao, Q., Zhou, J., and Lu, L.H., Anomalous hydration shell order of Na+ and K+ inside carbon nanotubes, Nano Lett., 2009, vol. 9, p. 989.
  17. Wander, M.C.F. and Shuford, K.L., Alkali halide interfacial behavior in a sequence of charged slit pores, J. Phys. Chem. C, 2011, vol. 115, p. 23610.
  18. Alishahi, M., Kamali, R., and Abouali, O., Molecular dynamics study of electric double layer in nanochannel, Russ. J. Electrochem., 2015, vol. 51, p. 49.
  19. Galashev, A.E. and Zaikov, Yu.P., Molecular dynamics study of Li+ migration through graphene membranes, Russ. J. Electrochem., 2015, vol. 51, p. 867.
  20. Kalluri, R.K., Ho, T.A., Biener, J., et al., Partition and structure of aqueous NaCl and CaCl2 electrolytes in carbon-slit electrodes, J. Phys. Chem. C, 2013, vol. 117, p. 13609.
  21. Lankin, A.V., Norman, G.E., and Stegailov, V.V., Atomistic simulation of the interaction of an electrolyte with graphite nanostructures in perspective supercapacitors, High Temperature, 2010, vol. 48, p. 837.
  22. Wander, M.C.F. and Shuford, K.L., Molecular dynamics study of interfacial confinement effects of aqueous NaCl brines in nanoporous carbon, J. Phys. Chem. C, 2010, vol. 114, p. 20539.
  23. Xu, K., Ji, X., Chen, C., et al., Electrochemical double layer near polar reduced graphene oxide electrode: insights from molecular dynamic study, Electrochim. Acta, 2015, vol. 166, p. 142.
  24. Song, H.D. and Beck, T.L., Temperature dependence of gramicidin channel transport and structure, J. Phys. Chem. C, 2013, vol. 117, p. 3701.
  25. Tang, Y.W., Chan, K.Y., and Szalai, I., Structural and transport properties of an SPC/E electrolyte in a nanopore, J. Phys. Chem. B, 2004, vol. 108, p. 18204.
  26. Tang, D. and Kim, D., The effect of counter-ions on the ion selectivity of potassium and sodium ions in nanopores, Bio-Med. Mater. Eng., 2014, vol. 24, p. 383.
  27. Zhu, Y.D., Guo, X.J., Shao, Q., et al. Molecular simulation study of the effect of inner wall modified groups on ionic hydration confined in carbon nanotube, Fluid Phase Equilib., 2010, vol. 297, p. 215.
  28. Gao, X, Zhao, T.S., Li, Z.G., Effects of ions on the diffusion coefficient of water in carbon nanotubes, J. Appl. Phys., 2014, vol. 116, p. 054311.
  29. Shao, Q, Huang, L.L., Zhou, J., et al., Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes, Phys. Chem. Chem. Phys., 2008, vol. 10, p. 1896.
  30. Shevkunov, S.V., Nucleation of water vapor in microcracks on the surface of ß-AgI aerosol particles: 1. The structure of nuclei, Colloid J., 2007, vol. 69, p. 360.
  31. Shevkunov, S.V., Nucleation of water vapor in microcracks on the surface of ß-AgI aerosol particles: 2. Thermodynamics of nucleation, Colloid J., 2007, vol. 69, p. 378.
  32. Shevkunov, S.V., Structure of water in microscopic fractures of a silver iodide crystal, Russ. J. Phys. Chem. A, 2014, vol. 88, p. 313.
  33. Shevkunov, S.V., Water in extremely narrow planar pores with crystalline walls. 1. Structure, Colloid J., 2014, vol. 76, p. 221.
  34. Shevkunov, S.V., Water in extremely narrow planar pores with crystalline walls. 2. Thermodynamics, Colloid J., 2014, vol. 76, p. 240.
  35. Shevkunov, S.V., A computer simulation of the interaction of unsaturated vapors with a defective surface of a ß-AgI crystal, Russ. J. Phys. Chem. A, 2005, vol. 79, p. 1653.
  36. Shevkunov, S.V., Computer simulation of the initial stage of the nucleation of water vapors on the silver iodide crystal surface: 1.Microstructure, Colloid J., 2005, vol. 67, p. 497.
  37. Shevkunov, S.V., Stimulation of vapor nucleation on perfect and imperfect hexagonal lattice surfaces, J. Exp. Theor. Phys., 2008, vol. 107, p. 965.
  38. Shevkunov, S.V., Structure of water adsorbed in slitshaped pores of silver iodide crystal, Comput. Theor. Chem., 2016, vol. 1084, p. 1.
  39. Shevkunov, S.V., The phenomenon of domain formation in a liquid film on a polarizable substrate, Dokl. Phys., 2011, vol. 56, p. 323.
  40. Shevkunov, S.V., Collective interactions in the mechanism of adhesion of condensed phase nuclei to a crystal surface. 1. Spatial organization, Colloid J., 2012, vol. 74, p. 589.
  41. Shevkunov, S.V., Collective interactions in the mechanism of adhesion of condensed phase nuclei to a crystal surface. 2. Thermodynamic stability, Colloid J., 2012, vol. 74, p. 608.
  42. Shevkunov, S.V., Domain nucleation in the contact layer at an interface of water and polarizable substrate, Russ. J. Phys. Chem. A, 2013, vol. 87, p. 1654.
  43. Shevkunov, S.V., Water vapor nucleation on a crystal surface in a strong electric field, Colloid J., 2013, vol. 75, p. 444.
  44. Shevkunov, S.V., Structure of the hydration shell of the Na+ ion in a planar nanopore with hydrophobic walls, Russ. J. Phys. Chem. A, 2014, vol. 88, p. 1744.
  45. Shevkunov, S.V., Thermodynamic characteristics of the Na+ ion in a planar nanopore with hydrophobic walls, Russ. J. Phys. Chem. A, 2014, vol. 88, p. 2165.
  46. Shevkunov S.V. Water vapor clustering in the field of a chlorine anion occurring, Colloid J., 2014, vol. 76, p. 490.
  47. Shevkunov, S.V., The hydrate shell of a Cl–ion in a planar nanopore. Structure, Russ. J. Electrochem., 2014, vol. 50, p. 1118.
  48. Shevkunov, S.V., The hydrate shell of a Cl–ion in a planar nanopore. Thermodynamic stability, Russ. J. Electrochem., 2014, vol. 50, p. 1127.
  49. Shevkunov, S.V., Phenomenon of the ousting of a monatomic ion from its hydration shell in flat nanopores, J. Struct. Chem., 2016, vol. 57, p. 104.
  50. Shevkunov, S.V., Hydration of Cl–ion in a planar nanopore with hydrophilic walls. 1. Molecular structure, Colloid J., 2016, vol. 78, p. 121.
  51. Shevkunov, S.V., Hydration of Cl–ion in a planar nanopore with hydrophilic walls. 2. Thermodynamic stability, Colloid J., 2016, vol. 78, p. 137.
  52. Shevkunov, S.V., Computer simulation of the hydration of a chloride anion in a nanopore with hydrophilic walls, Russ. J. Phys. Chem. A, 2016, vol. 90, p. 1015.
  53. Shevkunov, S.V., Water vapor clustering in the field of Na+ cation inside a nanopore with hydrophilic walls. 1. Spatial organization, Colloid J., 2016, vol. 78, p. 242.
  54. Shevkunov, S.V., Water vapor clustering in the field of Na+ cation inside a nanopore with hydrophilic walls. 2. Thermodynamic properties, Colloid J., 2016, vol. 78, p. 257.
  55. Shevkunov, S.V., Structure and electric properties of the hydration shell of a singly charged chloride ion in a nanopore with hydrophilic walls, Russ. J. Electrochem., 2016, vol. 52, p. 397.
  56. Shevkunov, S.V., Effect of hydrophilic walls on the hydration of sodium cations in planar nanopores, Russ. J. Phys. Chem. A, 2016, vol. 90, p. 1879.
  57. Shevkunov, S.V., Structure and electric properties of sodium ion hydrate shell in nanopore with hydrophilic walls, Russ. J. Electrochem., 2016, vol. 92, p. 910.
  58. Shevkunov, S.V., Water vapor nucleation on ion pairs under the conditions of a planar nanopore, Colloid J., 2016, vol. 78, p. 542.
  59. Shevkunov, S.V., Ion pairs in aqueous electrolyte microdrops under conditions of a flat nanopore, Russ. J. Electrochem., 2016, vol. 52, p. 1064.
  60. Shevkunov, S.V., Structure and stability of hydrogen bonds under conditions of heating in nanopores, HighTemperature, 2015, vol. 53, p. 259.
  61. Shevkunov, S.V., Numerical calculation of the critical size of a new nuclei phase, Kolloidn. Zh., 1983, vol. 45, no. 5, p. 1019.
  62. Shevkunov, S.V., Calculation of the Gibbs energy of the reaction by the Monte Carlo method, Russ. J. Gen. Chem., 2002, vol. 72, p. 685.
  63. Shevkunov, S.V., Computer simulation of molecular complexes H3O+(H2O)n under conditions of thermal fluctuations: 2. Work of formation and structure, Russ. J. Gen. Chem., 2004, vol. 74, p. 1471.
  64. Shevkunov, S.V., Monte Carlo calculations of the characteristics of the hydration sheaths of the Cl–and H3O+ ions in water vapor, Russ. J. Phys. Chem., 2004, vol. 78, p. 1590.
  65. Shevkunov, S.V., Computer simulation of the initial stage of the nucleation of water vapors on the silver iodide crystal surface: 2. Thermodynamics, Colloid J., 2005, vol. 67, p. 509.
  66. Shevkunov, S.V., Numerical simulation of water vapor nucleation on electrically neutral nanoparticles, J. Exp. Theor. Phys., 2009, vol. 108, p. 447.
  67. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Monte Carlo bicanonical ensemble simulation for sodium cation hydration free energy in liquid water, Fluid Phase Equilib., 2005, vol. 233, p. 34.
  68. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Ionwater cluster free energy computer simulation using some of most popular ion-water and water-water pair interaction models, Chem. Phys., 2007, vol. 332, p. 188.
  69. Lukyanov, S.I., Zidi, Z.S., and Shevkunov, S.V., Bicanonical Monte Carlo simulation of the structural properties of Cl–(H2O)n clusters using entropy data based model, J. Mol. Struct.: THEOCHEM, 2005, vol. 725, p. 191.
  70. Shevkunov, S.V., Effect of chlorine ions on the stability of nucleation cores in condensing water vapors, Russ. J. Phys. Chem. A, 2011, vol. 85, p. 1584.
  71. Shevkunov, S.V., Adsorption of water vapor on the AgI surface: A computer experiment, Russ. J. Gen. Chem., 2005, vol. 75, p. 1632.
  72. Shevkunov, S.V., Molecular structure of finely disperse Na+Cl–(H2O)n aerosol particles in water vapor, Colloid J., 2014, vol. 76, p. 753.
  73. Shevkunov, S.V., Charge separation in Na+Cl–(H2O)n clusters in water vapors. 1. Intermolecular interactions, Colloid J., 2010, vol. 72, p. 93.
  74. Shevkunov, S.V., Computer simulation of dissociative equilibrium in aqueous NaCl electrolyte with account for polarization and ion recharging. Model of interactions, Russ. J. Electrochem., 2013, vol. 49, p. 228.
  75. Arshadi, M., Yamdagni, R., and Kebarle, P., Hydration of the halide negative ions in the gas phase. II. Comparison of hydration energies for the alkali positive and halide negative ions, J. Phys. Chem., 1970, vol. 74, p. 1475.
  76. Hiroaka, K., Mizuse, S., and Yamade, S., Solvation of halide ions with water and acetonitrile in the gas phase, J. Phys.Chem., 1988, vol. 92, p. 3943.
  77. Olleta, A.C., Lee, H.M., and Kim, K.S., Ab initio study of hydrated sodium halides NaX(H2O)1–6 NaX(H2O)1–6 (X = F, Cl, Br, and I), J. Chem. Phys., 2006, vol. 124, p. 024321.
  78. Radtsig, A.A. and Smirnov, B.M., Spravochnik po atomnoi i molekulyarnoi fizike (Handbook of Atomic and Molecular Physics), Moscow: Atomizdat, 1980
  79. Shevkunov, S.V., Computer simulation of dissociative equilibrium in aqueous NaCl electrolyte with account for polarization and ion recharging. Ionization mechanism, Russ. J. Electrochem., 2013, vol. 49, p. 238.
  80. Shevkunov, S.V., A high energy barrier to charge recombination in ionized water vapor, High Energy Chem., 2009, vol. 43, p. 341.
  81. Shevkunov, S.V., Charge separation in Na+Cl–(H2O)n clusters in water vapors. 2. Free energy, Colloid J., 2010, vol. 72, p. 107.
  82. Shevkunov, S.V., Nucleation of water vapor on Na+Cl–ion pairs: computer simulation, Colloid J., 2011, vol. 73, p. 135.
  83. Shevkunov, S.V., Thermodynamic stability of finely dispersed Na+Cl–(H2O)n aerosol particles in water vapor, Colloid J., 2015, vol. 77, p. 359.
  84. Hill, T.L., Statistical Mechanics: Principles and Selected Applications, New York: McGraw-Hill, 1956 (translated into Russian).
  85. Shevkunov, S.V., Nonpair interactions in Na+(H2O)n clusters under thermal fluctuation conditions, Russ. J. Phys. Chem. A, 2009, vol. 83, p. 972.
  86. Shevkunov, S.V., Polarization effects in Cl–(H2O)n clusters. Computer simulation, Colloid J., 2009, vol. 71, p. 406.
  87. Shevkunov S.V., Crisis of stability of hydration shell of Na+ ion in condensing water vapor, Colloid J., 2011, vol. 73, p. 275.