Abstract / Full Text

Lithium metazirconate Li2ZrO3 was synthesized by various methods, and its electric conductivity was studied in the range 300–600°C. For the sample obtained by solid-phase synthesis, the temperature dependence of conductivity is linear in the Arrhenius coordinates and coincides with the literature data for Li2ZrO3 obtained by the similar procedure. The sample synthesized and sintered in vacuum has higher electric conductivity, but contains a Li2CO3 impurity. Possible reasons for the abrupt change in the conductivity of Li2ZrO3 at 430–470°C reported in some works were considered.

Author information
  • Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620137, Russia

    A. V. Kalashnova, S. V. Plaksin, E. G. Vovkotrub & G. Sh. Shekhtman

  1. Hellstrom, E.E., and Van Gool, W., Constraints for the selection of lithium solid electrolytes, Rev. Chim. Miner., 1980, vol. 17, p. 263.
  2. Abrahams, I., Lightfoot, P., and Bruce, P.G., Li6Zr2O7, a new anion vacancy ccp based structure, determined by ab initio powder diffraction methods, J. Solid State Chem., 1993, vol. 104, p. 397.
  3. Rao, R.P., Reddy, M.V., Adams, S., and Chowdari, B.V.R., Preparation and mobile ion transport studies of Ta and Nb doped Li6Zr2O7 Li-fast ion conductors, Mater. Sci. Eng., 2012, vol. B177, p. 100.
  4. Dong, Y., Zhao, Y., Duan, H., and Huang, J., Electrochemical performance and lithium-ion insertion/extraction mechanism studies of the novel Li2ZrO3 anode materials, Electrochim. Acta, 2015, vol. 161, p. 219.
  5. Huang, S., Wilson, B.E., Smyrl, W.H., Truhlar, D.G., and Stein, A., Transition-metal-doped M–Li8ZrO6 (M = Mn, Fe, Co, Ni, Cu, Ce) as high-specific-capacity Li-ion battery cathode materials: synthesis, electrochemistry, and quantum mechanical characterization, Chem. Mater., 2016, vol. 28, p. 746.
  6. Huang, S., Wilson, B.E., Wang, B., Fang, Y., Buffington, K., Stein, A., and Truhlar, D.G., Y-doped Li8ZrO6: A Li-ion battery cathode material with high capacity, J. Am. Ceram. Soc., 2015, vol. 137, p. 10992.
  7. Zocchi, M., Sora, N., Depero, L.E., and Roth, R.S., A single-crystal X-ray diffraction study of lithium zirconate, Li6Zr2O7, a solid-state ionic conductor, J. Solid State Chem., 1993, vol. 104, p. 391.
  8. Wyers, G.P. and Cordfunke, E.H.P., Phase relations in the system Li2O–ZrO2, J. Nucl. Mater., 1989, vol. 168, p. 24.
  9. Martel, L.C., and Roth, R.S., Phase-equilibria and crystal-chemistry in ternary oxide systems containing Li2O–Li2O–MO2–Ta2O5 (M = Ti, Sn, Zr, Th), Am. Ceram. Soc. Bull., 1981, vol. 60, p. 376.
  10. Enriquez, L.J., Quintana, P., and West, A.R., Compound formation in the system Li2O-ZrO2, Trans. Br. Ceram. Soc., 1982, vol. 81, p. 17.
  11. Hellstrom, E.E. and Van Gool, W., Li ion conduction in Li2ZrO3, Li4ZrO4, and LiScO2, Solid State Ionics, 1981, vol. 2, p. 59.
  12. Liao, Y., Singh, P., Park, K.S., Li, W., and Goodenough, J.B., Li6Zr2O7 interstitial lithium-ion solid electrolyte, Electrochim. Acta, 2013, vol. 102, p. 146.
  13. Shchelkanova, M.S., Pantyukhina, M.I., Kalashnova, A.V., and Plaksin, S.V., Electrochemical properties of Li8 − 2xMxZrO6 (M = Mg, Sr) solid electrolytes, Solid State Ionics, 2016, vol. 290, p. 12.
  14. Pantyukhina, M.I., Shchelkanova, M.S., and Plaksin, S.V., Synthesis and electrochemical properties of Li8‒xZr1–xNbxO6 solid solutions, Phys. Solid State, 2013, vol. 55, no. 4, p. 707.
  15. Andreev, O.L., Pantyukhina, M.I., Antonov, B.D., and Batalov, N.N., Synthesis and electrical properties of lithium metazirconate, Russ. J. Electrochem., 2000, vol. 36, p. 1335.
  16. Pantyukhina, M.I., Andreev, O.L., Antonov, B.D., and Batalov, N.N., Synthesis and electrical properties of lithium zirconates, Russ. J. Inorg. Chem., 2002, vol. 47, p. 1630.
  17. Sherstobitova, E.A., Gubkin, A.F., Bobrikov, A.F., Kalashnova, A.V., and Pantyukhina, M.I., Bottlenecked ionic transport in Li2ZrO3: high temperature neutron diffraction and impedance spectroscopy, Electrochim. Acta, 2016, vol. 209, p. 574.
  18. Baklanova, Y.V., Zhuravlev, N.A., Maximova, L.G., Denisova, T.A., Leonidova, O.N., Raskovalov, A.A., and Tarakina, N.V., Synthesis and physicochemical properties of Li2MxZr1–xO3–δ (M = Nb, Ti; x = 0.05, 0.1) solid solutions, Bull. Russ. Acad. Sci.: Phys., 2014, vol. 78, no. 4, p. 320.
  19. Plyushchev, V.E. and Stepin, B.D., Khimiya i tekhnologiya soedinenii litiya, rubidiya i tseziya (Chemistry and Technology of Lithium, Rubidium, and Cesium Compounds), Moscow: Khimiya, 1970, pp. 24–60.
  20. Biefeld, R.M. and Johnson, R.T., Ionic conductivity of Li2O-based mixed oxides and the effect of moisture and LiOH on their electrical and structural properties, J. Solid State Chem., 1979, vol. 29, p. 393.
  21. Johnson, R.T. and Biefeld, R.M., Ionic conductivity of Li5AlO4 and Li5GaO4 in moist air environments: potential humidity sensors, Mater. Res. Bull., 1979. vol. 14, p. 537.
  22. Muhle, C., Dinnebier, R.E., van Wullen, L, Schwering, G., and Jansen, M., New insights into the structural and dynamical features of lithium hexaoxometalates Li7MO6 (M = Nb, Ta, Sb, Bi), Inorg. Chem., 2004, vol. 43, p. 874.
  23. Baklanova, Y.V., Denisova, T.A., Maksimova, L.G., Tyutyunnik, A.P., Baklanova, I.V., Shein, I.V., Neder, R.B., and Tarakina, N.V., Synthesis and characterisation of new MO(OH)2 (M = Zr, Hf) oxyhydroxides and related Li2MO3 salts, Dalton Trans., 2014, vol. 43, p. 2755.
  24. Brooker, M.H., and Bates, J.B., Raman and infrared spectral studies of anhydrous Li2CO3 and Na2CO3, J. Chem. Phys., 1971, vol. 54, p. 4788.