Examples



mdbootstrap.com



 
Статья
2020

Low-Temperature Synthesis of K–Ba–Bi–O Oxides in KOH Solution


N. V. BarkovskiiN. V. Barkovskii
Российский журнал общей химии
https://doi.org/10.1134/S1070363220090157
Abstract / Full Text

The reaction of KBiO3–δ with Ba2+ ions at a Ba : Bi ratio of 0.5‒1.6 (mol.) in a 10 M. KOH solution under reflux (~140°C) has furnished oxides, which composition and structure have been studied by X-ray diffraction, energy dispersive X-Ray, and chemical analysis. Pseudo cubic (а = 4.271‒4.285 Å) perovskite-like phases of barium‒bismuth(III,V)‒potassium oxides with insignificant impurity of sodium have been formed in the KBiO3–δ‒Ba2+‒OH‒H2O system during 1 h. The products have been characterized by an average oxidation state of bismuth Bi = 4.36‒4.59. Barium content in the resulting oxides has increased with an increase in its concentration in the charge. According to the Ba–Bi ratio, the resulting phases can be classified as non-superconducting oxides of homologous series МxBamBim+nOy (x <n), МxBamBim+nOy, and (М, Ba)m+nBimOy (m = 1, 2, ...; n = 0, 1, 2, ...), M = K, Na.

Author information
  • Institute of Solid State Physics of the Russian Academy of Sciences, 142432, Chernogolovka, RussiaN. V. Barkovskii
References
  1. Mattheis, L.F., Gyorgy, E.M., and Johnson, D.W., Phys. Rev. (B), 1988, vol. 37, p. 3745. https://doi.org/10.1103/PhysRevB.37.3745
  2. Cava, R.J., Batlogg, В., Krajewski, J.J., Farrow, R., Rupp, L.W.Jr., White, A.E., Short, K., Peck, W.F., and Kometani, T., Nature, 1988, vol. 332, p. 814. https://doi.org/10.1038/332814a0
  3. Schneemeyer, L.F., Thomas, J.K., Siegrist, Т., Batlogg, В., Rupp, L.W., Opila, R.L., Cava, R.J., and Murphy, D.W., Nature, 1988, vol. 335, p. 421. https://doi.org/10.1038/335421a0
  4. Norton, M.L., Mater. Res. Bull., 1989, vol. 24, no. 11, p. 1391. https://doi.org/10.1016/0025-5408(89)90145-1
  5. Cava, R.J., Siegrist, Т., Peck, W.F., Krajewski, J.J., Batlogg, В., and Rosamilia, J., Phys. Rev. (В), 1991, vol. 44, p. 9746. https://doi.org/10.1103/PhysRevB.44.9746
  6. Klinkova, L.A., Sverkhprovodimost’: Fiz., Kim., Tekh., 1993, vol. 6, no. 4, p. 855.
  7. Klinkova, L.A., Nikolaichik, V.I., Barkovskii, N.V., and Fedotov, V.K., Russ. J. Inorg. Chem., 1999, vol. 44, no. 12, p. 1974.
  8. Nikolaichik, V.I., Amelinckx, S., Klinkova, L.A., Barkovskii, N.V., Lebedev, O.I., and Van Tendeloo, G., J. Solid State Chem., 2002, vol. 163, no. 1, p. 44. https://doi.org/10.1006/jssc.2001.9362
  9. Klinkova, L.A., Nikolaichik, V.I., Barkovskii, N.V., and Fedotov, V.K., Russ. J. Inorg. Chem., 2001, vol. 46, no. 5, p. 628.
  10. Klinkova, L.A., Nikolaichik, V.I., Barkovskii, N.V., and Fedotov, V.K., Russ. J. Inorg. Chem., 2001, vol. 46, no. 10, p. 1437.
  11. Klinkova, L.A., Barkovskii, N.V., Fedotov, V.K., and Nikolaichik, V.I., Russ. J. Inorg. Chem., 2001, vol. 46, no. 10, p. 1448.
  12. Klinkova, L.A., Nikolaichik, V.I., Barkovskii, N.V., and Fedotov, V.K., Russ. J. Inorg. Chem., 2002, vol. 47, no. 6, p. 757.
  13. Klinkova, L.A., Nikolaichik, V.I., Barkovskii, N.V., and Fedotov, V.K., Russ. J. Inorg. Chem., 2004, vol. 49, no. 4, p. 493.
  14. Klinkova, L.A., Nikolaichik, V.I., Barkovskii, N.V., and Fedotov, V.K., Russ. J. Inorg. Chem., 2005, vol. 50, no. 5, p. 659.
  15. Klinkova, L.A., Nikolaichik, V.I., Barkovskii, N.V., and Fedotov, V.K., Russ. J. Inorg. Chem., 2000, vol. 45, no. 10, p. 1467.
  16. Hinks, D.G., Mitchell, A.W., Zheng, Y., Richards, D.R., and Dabrowski, B., Appl. Phys. Lett., 1989, vol. 54, no. 16, p. 1585. https://doi.org/10.1063/1.101388
  17. Aurivillius, B., Ark. Kemi. Mineral. Geol. (A), 1943, vol. 16, no. 17, p. 1.
  18. Fleming, R.M., Marsh, P., Cava, R.J., and Krajewski, J.J.,Phys. Rev. (В), 1988, vol. 38, no. 10, p. 7026. https://doi.org/10.1103/PhysRevB.38.7026
  19. Weller, M.T., Grasmeder, J.R., Lanchester, P.C., de Groot, J., Rapson, G.P., and Hannon, A.C., Physica (C), 1988, vol. 156, no. 2, p. 265. doi10.1016/0921-4534(88)90820-9
  20. Hinks, D.G., Dabrowski, В., Jorgensen, J.D., Mitchell, A.W., Richards, D.R., Pei, S., and Shi, D., Nature, 1988, vol. 333, p. 836. https://doi.org/10.1038/333836a0
  21. Uemura, Y.J., Sternlieb, B.J., Cox, D.E., Brewer, J.H., Kadono, R., Kempton, J.R., Kiefl, R.F., Kreitzman, S.R., Luke, G.M., Mulhern, P., Riseman, T., Williams, D.L., Kossler, W.J., Yu, X.H., Stronach, C.E., Subramanian, M.A., Gopalakrishnan, J., and Sleight, A.W., Nature, 1988, vol. 335, p. 151. https://doi.org/10.1038/335151a0
  22. Kwei, G.H., Goldstone, J.A., Lawson, A.C., Thompson, J.D., and Williams, A., Phys. Rev. (B), 1989, vol. 39, no. 10, p. 7378. https://doi.org/10.1103/PhysRevB.39.7378
  23. Shiryaev, S.V., Zhigunov, D.I., Barilo, S.N., Pushkarev, A.V., Researcher, S., Researcher, J., Zakharov, A.A., and Igolkina, L., Proc. ICMAS’93, Niku-Lari, A., Ed., Paris, 1993, p. 137.
  24. Von Lux, H., Kuhn, R., and Niedermaier, T., Z. Anorg. Allg. Chem., 1959, vol. 298, nos. 5–6, p. 285. https://doi.org/10.1002/zaac.19592980508
  25. Zhao, L.Z., Yin, B., Zhang, J.B., Li, J.W., and Xu, C.Y., Physica (C), 1997, vols. 282–287, p. 1311. https://doi.org/10.1016/S0921-4534(97)00721-1
  26. Barkovskii, N.V., Klinkova, L.A., and Zver’kov, S.A., Russ. J. Inorg. Chem., 1995, vol. 44, no. 11, p. 1721.
  27. Barkovskii, N.V. and Fedotov, V.K., Sverkhprovodimost’: Fiz., Kim., Tekh., 1995, vol. 8, no. 3, p. 510.
  28. Trehoux, J., Abraham, F., and Thomas, D., Mat. Res. Bull., 1982, vol. 17, no. 10, p. 1235. https://doi.org/10.1016/0025-5408(82)90158-1
  29. Von Sholder, R. and Stobbe, H., Z. Anorg. Allg. Chem., 1941, vol. 247, no. 4, p. 392. https://doi.org/10.1002/zaac.19412470404
  30. Kumada, N., Kinomura, N., Woodward, P.M., and Sleight, A.W.,J. Solid State Chem., 1995, vol. 116, no. 2, p. 281. https://doi.org/10.1006/jssc.1995.1214
  31. Jansen, M., Z. Naturforsch. B, 1977, vol. 32, no. 11, p. 1340.
  32. Kodialam, S., Korthius, V.C., Hoffmann, R.-D., and Sleight, A.W.,Mat. Res. Bull., 1992, vol. 27, p. 1379. https://doi.org/10.1016/0025-5408(92)90002-H
  33. Nguyen, T.N., Giaquinta, D.M., Davis, W.M., and Loye, H.C.Z.,Chem. Mater., 1993, vol. 5, no. 9, p. 1273. https://doi.org/10.1021/cm00033a015
  34. Salem-Sugui, S., Alp, E.E., Mini, S.M., Ramanathan, M., Campuzano, J.C., Jennings, G., Faiz, M., Pei, S., Dabrowski, B., Zheng, Y., Richards, D.R., and Hinks, D.G., Phys. Rev. (В), 1991, vol. 43, no. 7, p. 5511. https://doi.org/10.1103/PhysRevB.43.5511
  35. Barkovskii, N.V., Zavod. Labor. Diagnost. Material., 2019, vol. 85, no. 8, p. 16. https://doi.org/10.26896/1028-6861-2019-85-8-16-28
  36. Barkovskii, N.V., Russ. J. Analyt. Chem., 2015, vol. 70, no. 11, p. 1346. https://doi.org/10.1134/S1061934815090048
  37. Barkovskii, N.V., Russ. J. Gen. Chem., 2016, vol. 86, no. 8, p. 1787. https://doi.org/10.1134/S1070363216080028
  38. Zhang, G., Li, G., Huang, F., Liao, F., Li, K., Wang, Y., and Lin, J., J. Alloys Compd., 2011, vol. 509, no. 41, p. 9804. https://doi.org/10.1016/j.jallcom.2011.08.031
  39. Chaillout, C., Durr, J., Escribe-Filippini, C., Fournier, T., Marcus, J., and Marezio, M., J. Solid State Chem., 1991, vol. 93, no. 1, p. 63. https://doi.org/10.1016/0022-4596(91)90274-L
  40. Rubel, M.H.K., Miura, A., Takei, T., Kumada, N., Ali, M.M., Nagao, M., Watauchi, S., Tanaka, I., Oka, K., Azuma, M., Magome, E., Moriyoshi, C., Kuroiwa, Y., and Islam, A.K.M.A., Angew. Chem. Int. Ed., 2014, vol. 53, no. 14, p. 3599. https://doi.org/10.1002/anie.201400607
  41. Klinkova, L.A., Uchida, M., Matsui, Y., Nikolaichik, V.I., and Barkovskii, N.V., Phys. Rev. (B), 2003, vol. 67. 140501. https://doi.org/10.1103/PhysRevB.67.140501
  42. Klinkova, L.A., Nikolaichik, V.I., Barkovskii, N.V., and Fedotov, V.K., Russ. J. Inorg. Chem., 2004, vol. 49, no. 7, p. 1094.
  43. Khasanova, N.R., Yamamoto, A., Tajima, S., Wu, X.-J., and Tanabe, K., Physica (C), 1998, vol. 305, nos. 3–4, p. 275. https://doi.org/10.1016/S0921-4534(98)00340-2
  44. Barkovskii, N.V., Russ. J. Gen. Chem., 2019, vol. 89, no. 2, p. 173. https://doi.org/10.1134/S1070363219020014