Examples



mdbootstrap.com



 
Статья
2022

Thermodynamics and Crystallization Kinetics of Solid Solutions GaSxSe1 – x (0 ≤ х ≤ 1)


S. M. AsadovS. M. Asadov
Российский журнал физической химии А
https://doi.org/10.1134/S0036024422020029
Abstract / Full Text

The results on the study of phase equilibria and crystallization of GaSxSe1 – x (0 ≤ х ≤ 1) solid solution in the GaS–GaSe system are presented. Using DTA, XRD, and the approximation of regular solutions, the physico-chemical and thermodynamic laws of the T – x phase diagram of GaS–GaSe, where a continuous series of solid solutions are formed, are determined. The temperature–concentration dependences of the change in the Gibbs free energy of the system are calculated. For nucleation and crystallization of GaSxSe1 – x solid solutions, a model based on a Fokker–Planck type equation in the size space has been tested.

Author information
  • National Academy of Sciences of Azerbaijan, Institute of Catalysis and Inorganic Chemistry, Baku, AzerbaijanS. M. Asadov
References
  1. Semiconductors Data Handbook, Ed. by O. Madelung (Springer, Berlin, 2004). https://doi.org/10.1007/978-3-642-18865-7
  2. V. P. Vasil’ev, Inorg. Mater. 43, 115 (2007). https://doi.org/10.1134/S0020168507020045
  3. A. V. Tyurin, A. D. Izotov, K. S. Gavrichev, and V. P. Zlomanov, Inorg. Mater. 50, 903 (2014). https://doi.org/10.1134/S0020168514090155
  4. A. Kuhn, A. Bourdon, J. Rigoult, and A. Rimsky, Phys. Rev. B 25, 4081 (1982). https://doi.org/10.1103/PhysRevB.25.4081
  5. S. N. Mustafaeva and M. M. Asadov, Solid State Commun. 45, 491 (1983). https://doi.org/10.1016/0038-1098(83)90159-X
  6. S. M. Asadov, S. N. Mustafaeva, and V. F. Lukichev, Russ. Microelectron. 48, 422 (2019). https://doi.org/10.1134/S1063739719660016
  7. S. N. Mustafaeva, M. M. Asadov, and A. A. Ismailov, Phys. Solid State 50, 2040 (2008). https://doi.org/10.1134/S1063783408110073
  8. S. Shigetomi and T. Ikari, J. Appl. Phys. 102, 033701 (2007). https://doi.org/10.1063/1.2764218
  9. S. N. Mustafaeva and M. M. Asadov, Mater. Chem. Phys. 15, 185 (1986). https://doi.org/10.1016/0254-0584(86)90123-9
  10. D. H. Mosca, N. Mattoso, C. M. Lepienski, et al., J. Appl. Phys. 91, 140 (2002). https://doi.org/10.1063/1.1423391
  11. G. Micocci, A. Serra, and A. Tepore, J. Appl. Phys. 82, 2365 (1997). https://doi.org/10.1063/1.366046
  12. S. Shigetomi and T. Ikar, J. Appl. Phys. 95, 6480 (2004). https://doi.org/10.1063/1.1715143
  13. Y.-K. Hsu, C.-S. Chang, and W.-C. Huang, J. Appl. Phys. 96, 1563 (2004). https://doi.org/10.1063/1.1760238
  14. S. N. Mustafaeva, Neorg. Mater. 30, 577 (1994).
  15. F. Zheng, J. Y. Shen, Y. Q. Liu, et al., CALPHAD 32, 432 (2008). https://doi.org/10.1016/j.calphad.2008.03.004
  16. Y. Ni, H. Wu, C. Huang, et al., J. Cryst. Growth 381, 10 (2013). https://doi.org/10.1016/j.jcrysgro.2013.06.030
  17. I. C. I. M. Terhell, Prog. Cryst. Growth Charact. 7, 55 (1983). https://doi.org/10.1016/0146-3535(83)90030-8
  18. T. Wang, J. Li, Q. Zhao, et al., Materials 11, 186 (2018). https://doi.org/10.3390/ma11020186
  19. N. Fernelius, Prog. Cryst. Growth Charact. 28, 275 (1994). https://doi.org/10.1016/0960-8974(94)90010-8
  20. P. G. Rustamov, Gallium Chalcogenides (Akad. Nauk AzSSR, Baku, 1967), p. 130 [in Russian].
  21. S. M. Asadov, S. N. Mustafaeva, and A. N. Mammadov, J. Therm. Anal. Calorim. 133, 1135 (2018). https://doi.org/10.1007/s10973-018-6967-7
  22. S. Bereznaya, Z. Korotchenko, R. Redkin, et al., J. Opt. 19, 115503 (2017). https://doi.org/10.1088/2040-8986/aa8e5a
  23. C. H. Ho, S. T. Wang, Y. S. Huang, and K. K. Tiong, J. Mater. Sci. Mater. Electron. 20, S207 (2009). https://doi.org/10.1007/s10854-007-9539-3
  24. N. N. Kolesnikov, E. B. Borisenko, D. N. Borisenko, et al., Appl. Res. 9, 66 (2018). https://doi.org/10.1134/S2075113318010173
  25. T. Wang, J. Li, Q. Zhao, et al., Materials 11, 186 (2018). https://doi.org/10.3390/ma11020186
  26. H. Risken, The Fokker-Planck Equation: Methods of Solutions and Applications, 2nd ed. (Springer, Berlin, 1996). https://doi.org/10.1007/9783642615443
  27. A. Ya. Gorbachevsky, Mat. Model. 11, 23 (1999).
  28. S. N. Mustafaeva, M. M. Asadov, S. B. Kyazimov, and N. Z. Gasanov, Inorg. Mater. 48, 984 (2012).
  29. S. N. Mustafayeva, Vse Mater. Entsikl. Sprav., No. 10, 74 (2016).
  30. M. M. Asadov and K. M. Ahmedly, Neorg. Mater. 32, 133 (1996).
  31. M. M. Asadov and K. M. Ahmedly, Solid State Phenom. 138, 331 (2008). https://doi.org/10.4028/www.scientific.net/SSP.138.331
  32. S. M. Asadov, A. N. Mamedov, and S. A. Kulieva, Inorg. Mater. 52, 876 (2016). https://doi.org/10.1134/S0020168516090016
  33. A. G. Morachevskiy and I. B. Sladkov, Thermodynamic Calculations in Metallurgy, The Handbook, 2nd ed. (Metallurgiya, Moscow, 1993) [in Russian].
  34. D. Kashchiev, Nucleation. Basic Theory with Applications (Butterworth-Heinemann, Elsevier, Oxford, Amsterdam, 2003).
  35. Nucleation in Condensed Matter: Applications in Materials and Biology, Ed. by K. F. Kelton and A. L. Greer, Vol. 15 of Pergamon Materials Series (Elsevier, Pergamon, Amsterdam, 2010).
  36. K. A. Kokh, J. F. Molloy, M. Naftaly, et al., Mater. Chem. Phys. 154, 152 (2015). https://doi.org/10.1016/j.matchemphys.2015.01.058
  37. E. Borisenko, D. Borisenko, I. Bdikin, et al., Mater. Sci. Eng. A 757, 101 (2019). https://doi.org/10.1016/j.msea.2019.04.095
  38. J. H. ter Horsta and D. J. Kashchiev, Chem. Phys. 123, 114507 (2005). https://doi.org/10.1063/1.2039076
  39. A. L. Michael, R. B. Andrea, W. G. Derek, et al., Ind. Eng. Chem. Res. 47, 9812 (2008). https://doi.org/10.1021/ie800900f
  40. S. K. Godunov and V. S. Ryaben’kiy, Difference Schemes. Introduction to the Theory, 2nd ed. (Nauka, Moscow, 1977) [in Russian].
  41. N. Mott and E. Davis, Electronic Processes in Non-Crystalline Materials, 2nd ed. (Oxford Univ. Press, Oxford, 1979).
  42. V. Augelli, C. Manfredotti, R. Murri, et al., Nuovo Cim. B 38, 327 (1977).
  43. Y. Saito, M. Honjo, T. Konishi, and A. Kitada, J. Phys. Soc. Jpn. 69, 3304 (2000). https://doi.org/10.1143/jpsj.69.3304