Effect of Electric Current on the Wettability of Carbon-Containing Gas Diffusion Electrodes by Aqueous Solutions and the Change in Their Capacitance Characteristics

G. A. KolyaginG. A. Kolyagin, V. L. KornienkoV. L. Kornienko
Российский электрохимический журнал
Abstract / Full Text

We study the effect of the treatment by an electric current of two-layer gas diffusion electrodes made of porous (66–68 vol %) composite material based on A-437E acetylene black and polytetrafluoroethylene. Polarization is carried out cyclically in the range 0.0 ± 2.0 V by anodic and cathodic currents, respectively, in 1 M H2SO4 and 0.5 M KOH with the addition of tetrabutylammonium bromide (TBAB). In both cases, the increase in the charge passed leads to an increase in the volume of electrolyte pores and the electrical capacitance of the electrodes. Under anodic polarization, the increase in the wettability and capacitance of the electrodes is larger than under the cathodic process; however, in the latter case, the carbon surface does not undergo oxidation. As the charge passed and the TBAB concentration increases, the ohmic loss grows. The possible causes of the observed phenomena are considered.

Author information
  • Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russia

    G. A. Kolyagin & V. L. Kornienko

  1. Tabti, Z., Berenguer, R., Ruiz-Rosas, R., Quijada, C., Morallón, E., and Cazorla-Amorós, D., Electrooxidation methods to produce pseudocapacitance-containing porous carbons, Electrochemistry, 2013, vol. 81, p. 833.
  2. Park, J., Oh, H., Ha, T., Lee, Y.I., and Min, K., A review of the gas diffusion layer in proton exchange membrane fuel cells: Durability and degradation, Appl. Energy, 2015, vol. 155, p. 866.
  3. Komarova, N.S., Krivenko, A.G., Stenina, E.V., Sviridova, L.N., Mironovich, K.V., Shulga, Y.M., and Krivchenko, V.A., Enhancement of the carbon nanowall film capacitance. Electron transfer Kinetics on Functionalized Surfaces, Langmuir, 2015, vol. 31, p. 7129.
  4. Zuleta, M., Bjornbom, P., and Lundblad, A., Effects of pore surface oxidation on electrochemical and masstransport properties of nanoporous carbon, J. Electrochem. Soc., 2005. vol. 152, p. A270.
  5. Kolyagin, G.A. and Kornienko, V.L., Impregnation of acetylene black electrodes with a polytetrafluoroethylene binder with an aqueous solution and evaluation of its specific double layer capacity, Russ. J. Electrochem., 2018, vol. 54, p. 96.
  6. Krivenko, A.G., Komarova, N.S., Sviridova, L.N., and Stenina, E.V., Adsorption characteristics of electrodes containing nanostructured carbon of different morphology, Russ. J. Electrochem., 2009, vol. 45, p. 1064.
  7. Kim, T., Ham, Ch., Rhee, Ch.K., Yoon, S.-H., Tsuji, M., and Mochida, I., Morphological reason for enhancement of electrochemical double layer capacitances of various acetylene blacks by electrochemical polarization, Electrochim. Acta, 2008, vol. 53, p. 5789.
  8. Jouikov, V., and Simonet, J., Doping of cathodically polarized glassy carbon by natural graphite. A simple procedure for overlaying different carbons with electrochemically modifiable graphene layers, Electrochim. Acta, 2015, vol. 172, p. 28.
  9. Alanyalioglu, M., Segura, J.J., Oró-Solè, J., and Casañ-Pastor, N., The synthesis of graphene sheets with controlled thickness and order using surfactantassisted electrochemical processes, Carbon, 2012, vol. 50, p. 142.
  10. Cooper, A.J., Wilson, N.R., Kinloch, I.A., and Dryfe, R.A.W., Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations, Carbon, 2014, vol. 66, p. 340.
  11. Kolyagin, G.A., Kornienko, V.L. Kuznetsov, B.N., and Chesnokov, N.V., Electrical conductivity of hydrophobized electrodes fabricated from thermally expanded graphite and their activity in electroreduction of oxygen, Russ. J. Appl. Chem., 2005, vol. 78, p. 1625.
  12. De-E Liu, Guoxin Xie, Dao Guo, Ziyi Cui, Lina Si, Chunlei Wan, Wu Zou, and Jianbin Luo, Tunable lubricity of aliphatic ammonium graphite intercalation compounds at the micro/nanoscale, Carbon, 2017, vol. 115, p. 574.
  13. Rehbinder, P.A., Poverkhnostnye yavleniya v dispersnykh sistemakh. Fiziko-khimicheskaya mekhanika. Izbrannye Trudy (Surface Phenomena in Disperse Systems: Physicochemical Mechanics. Selected Works), Moscow: Nauka, 1979.
  14. Summ, B.D. and Gorynov, Yu.V., Fiziko-khimicheskie osnovy smachivaniya i rastekaniya (Physicochemical Bases of Wetting and Spreading), Moscow: Khimiya, 1976.
  15. Krivenko, A.G., Komarova, N.S., Stenina, E.V., Sviridova, L.N., Kurmaz, V.A., Kotkin, A.S., and Muradyan, V.E., Electrochemical behavior of electrodes containing nanostructured carbon of various morphology in the cathodic region of potentials, Russ. J. Electrochem., 2006, vol. 42, p. 1047.
  16. Kolyagin, G.A. and Kornienko, V.L., Electrosynthesis of H2O2 from O2 in gas diffusion electrodes for the preparation of organic peracids and the complex of H2O2 with urea, Russ. J. Electrochem., 2015, vol. 51, p. 185.
  17. Perry, M.L., Patterson, T., and Madden, T., GDL degradation in PEFC, ECS Trans., 2010, vol. 33, p. 1081.
  18. Yu, S.C., Li, X.J., Liu, S., Hao, J.K., Shao, Z.G., and Yia, B.L., Study on hydrophobicity loss of the gas diffusion layer in PEMFCs by electrochemical oxidation, RSC Adv., 2014, vol. 4, p. 3852.
  19. Kim, Y.-T. and Mitani, T., Competitive effect of carbon nanotubes oxidation on aqueous EDLC performance: Balancing hydrophilicity and conductivity, J. Power Sources, 2006, vol. 158, p. 1517.
  20. Mayranovsky, S.G., Properties of solutions of tetrasubstituted ammonium salts. Their influence on electrode processes, in Elektrosintez i bioelektrohimiya (Progress elektrokhimii organicheskikh soedinenii) (Electrosynthesis and Bioelectrochemistry: Progress in the Electrochemistry of Organic Compounds), Frumkin, A.N., Stradyn, Ya.P., and Feoktistov, L.G., Eds., Moscow: Nauka, 1975. P. 252.