Examples



mdbootstrap.com



 
Статья
2019

Paradox of the Variation of the Bulk Resistance of Potassium Ion-Selective Electrode Membranes within Nernstian Potentiometric Response Range


Ye. O. Kondratyeva Ye. O. Kondratyeva , E. V. Solovyeva E. V. Solovyeva , G. A. Khripoun G. A. Khripoun , K. N. Mikhelson K. N. Mikhelson
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519110090
Abstract / Full Text

Bulk resistance and other electrochemical properties of membranes of K+-selective electrodes (ISEs) containing valinomycin are measured by means of chronopotentiometry and electrochemical impedance. It is shown that the bulk resistance of the membranes, within the Nernstian potentiometric response range, increases along decrease of KCl concentration in solution. Analogous results were reported earlier for Ca2+ and NO3- ISEs. This non-constancy of the bulk resistance is in conflict with current views on the mechanism of ISEs response. Tentatively, this paradox is ascribed to heterogeneity of membranes due to water uptake from solution.

Author information
  • Chemistry Institute, St. Petersburg State University, 198504, St. Petersburg, Russia

    Ye. O. Kondratyeva, E. V. Solovyeva, G. A. Khripoun & K. N. Mikhelson

References
  1. Morf, W.E., The Principles of Ion-Selective Electrodes and of Membrane Transport, Budapest: Akademiai Kiado, 2003.
  2. Bakker, E., Buhlmann, P., and Pretsch, E., Chem. Rev., 1997, vol. 97, p. 3083.
  3. Bobacka, J., Ivaska, A., and Lewenstam, A., Chem. Rev., 2008, vol. 108, p. 329.
  4. Mikhelson, K.N., Ion-Selective Electrodes, Heidelberg, New York, Dordrecht, London: Springer, 2013.
  5. Mikhelson, K.N. and Peshkova, M.A., Russ. Chem. Rev., 2015, vol. 84, p. 555.
  6. Shul’ga, A.A., Ahlers, B., and Cammann, K., Electroanal. Chem. Interfacial Electrochem., 1995, vol. 395, p. 305.
  7. Cammann, K., Ahlers, B., Henn, D., Dumschat, C., and Shul’ga, A.A., Sens. Actuat. B, 1996, vol. 35, p. 26.
  8. Kim, Y. and Amemiya, S., Anal. Chem., 2008, vol. 80, p. 6056.
  9. Greenawalt, P.J. and Amemiya, S., Anal. Chem., 2016, vol. 88, p. 5827.
  10. Yuan, D., Cuartero, M., Crespo, G.A., and Bakker, E., Anal. Chem., 2017, vol. 89, p. 586.
  11. Yuan, D., Cuartero, M., Crespo, G.A., and Bakker, E., Anal. Chem., 2017, vol. 89, p. 595.
  12. Jarolimova, Z., Bosson, J., Labrador, G.M., Lacour, J., and Bakker, E., Electroanalysis, 2018, vol. 30, p. 650.
  13. Vanamo, U., Hupa, E., Yrjänä, V., and Bobacka, J., Anal. Chem., 2016, vol. 88, p. 4369.
  14. Han, T., Vanamo, U., and Bobacka, J., ChemElectroChem, 2016, vol. 3, p. 2071.
  15. Jarolímová, Z., Han, T., Mattinen, U., Bobacka, J., and Bakker, E., Anal. Chem., 2018, vol. 90, p. 8700.
  16. Jaworska, E., Pawlowski, P., Michalska, A., and Maksymiuk, K., Electroanalysis, 2018, vol. 30, p. 343.
  17. Mikhelson, K.N., Electroanalysis, 2003, vol. 15, p. 1236.
  18. Egorov, V.V., Novakovskii, A.D., and Zdrachek, E.A., Russ. J. Electrochem., 2018, vol. 54, p. 381.
  19. Egorov, V.V., Novakovskii, A.D., and Zdrachek, E.A., Anal. Chem., 2018, vol. 90, p. 1309.
  20. Morf, W.E., Badertscher, M., Zwickl, T., de Rooij, N.F., and Pretsch, E., J. Electroanal. Chem., 2002, vol. 526, p. 19.
  21. Ivanova, A.D., Koltashova, E.S., Solovyeva, E.V., Peshkova, M.A., and Mikhelson, K.N., Electrochim. Acta, 2016, vol. 213, p. 439.
  22. Sokalski, T. and Lewenstam, A., Electrochem. Commun., 2001, vol. 3, p. 107.
  23. Kucza, W., Danielewski, M., and Lewenstam, A., Electrochem. Commun., 2006, vol. 8, p. 416.
  24. Jasielec, J.J., Sokalski, T., Filipek, R., and Lewenstam, A., Anal. Chem., 2015, vol. 87, p. 8665.
  25. Szyszkiewicz, K., Jasielec, J.J., Danielewski, M., and Lewenstam, A., J. Electrochem. Soc., 2017, vol. 164, p. E3559.
  26. Shvarev, A.E., Rantsan, D.A., and Mikhelson, K.N., Sens. Actuat. B, 2001, vol. 76, p. 500.
  27. Kondratyeva, Ye.O., Solovyeva, E.V., Khripoun, G.A., and Mikhelson, K.N., Electrochim. Acta, 2018, vol. 259, p. 458.
  28. Ivanova, A. and Mikhelson, K., Sensors, 2018, vol. 18, p. 2062.
  29. Mikhelson, K.N., Bobacka, J., Lewenstam, A., and Ivaska, A., Electroanalysis, 2001, vol. 13, p. 876.
  30. Bühlmann, P., Pretsch, E., and Bakker, E., Chem. Rev., 1998, vol. 98, p. 1593.
  31. Mikhelson, K.N., Bobacka, J., Ivaska, A., Lewenstam, A., and Bochenska, M., Anal. Chem., 2002, vol. 74, p. 518.
  32. Mikhelson, K.N., Lutov, V.M., Sulko, K., and Stefanova, O.K., Sov. Electrochem., 1988, vol. 24, p. 1369.
  33. Peshkova, M.A., Korobeynikov, A.I., and Mikhelson, K.N., Electrochim. Acta, 2008, vol. 53, p. 5819.
  34. Oesch, U. and Simon, W., Helv. Chim. Acta, 1979, vol. 62, p. 754.
  35. Bodor, S., Zook, J.M., Lindner, E., Tóth, K., and Gyurcsányi, R.E., J. Solid State Electrochem., 2009, vol. 13, p. 171.
  36. Zook, J., Bodor, S., Lindner, E., Tóth, K., and Gyurcsányi, R.E., Electroanalysis, 2009, vol. 21, p. 1923.
  37. Chan, A.D.C., Li, X., and Harrison, J.D., Anal. Chem., 1992, vol. 64, p. 2512.
  38. Li, Z., Li, X., Petrovic, S., and Harrison, D.J., Anal. Chem., 1996, vol. 68, p. 1717.
  39. Lindfors, T., Sundfors, F., Höfler, L., and Gyur-csányi, G.E., Electroanalysis, 2009, vol. 21, p. 1914.
  40. He, N. and Lindfors, T., Anal. Chem., 2013, vol. 85, p. 1006.