Abstract / Full Text

By methods of cyclic voltammetry and preparative electrolysis, the electrochemical properties of sterically hindered imidazolium salt 3-(6-(1H-pyrazol-1-yl)pyridin-2-yl)-1-(2,6-diisopropylphenyl)-1H-imidazol-3-ium bromide containing the pyrazolyl-pyridyl moiety are studied and the N-heterocyclic carbene complexes of nickel(II) are electrochemically synthesized by the cathodic reduction of this salt in the presence of nickel(II) ions. The monitoring of this preparative electrosynthesis by mass spectrometric measurements demonstrates that these organonickel complexes can contain either one (when a diaphragm cell is used) or two (when the diaphragmless cell contains a soluble nickel anode) N-heterocyclic carbene ligands.

Author information
  • Arbuzov Institute of Organic and Physical Chemistry of FRC Kazan Scientific Center of RAS, 420088, Kazan, Russia

    Z. N. Gafurov, I. F. Sakhapov, V. M. Babaev, D. R. Islamov, O. G. Sinyashin & D. G. Yakhvarov

  • Kazan (Volga Region) Federal University, 420008, Kazan, Russia

    A. O. Kantyukov, A. A. Kagilev, G. Giambastiani, K. S. Usachev & D. G. Yakhvarov

  • ICCOM-CNR, 50019, Florence, Italy

    L. Luconi, A. Rossin & G. Giambastiani

  1. Gafurov, Z.N., Kagilev, A.A., Kantyukov, A.O., Balabaev, A.A., Sinyashin, O.G., and Yakhvarov, D.G., Classification and synthesis of nickel pincer complexes, Russ. Chem. Bull., 2018, vol. 67, p. 385.
  2. Gafurov, Z.N., Kantyukov, A.O., Kagilev, A.A., Balabaev, A.A., Sinyashin, O.G., and Yakhvarov, D.G., Nickel and palladium N-heterocyclic carbene complexes. Synthesis and application in cross-coupling reactions, Russ. Chem. Bull., 2017, vol. 66, p. 1529.
  3. Mercs, L. and Albrecht, M., Beyond catalysis: N-heterocyclic carbene complexes as components for medicinal, luminescent, and functional materials applications, Chem. Soc. Rev., 2010, vol. 39, p. 1903.
  4. Díez-Gonzlez, S., Marion, N., and Nolan, S.P., N‑heterocyclic carbenes in late transition metal catalysis, Chem. Rev., 2009, vol. 109, p. 3612.
  5. Poyatos, M., Mata, J.A., and Peris, E., Complexes with poly(N-heterocyclic carbene) ligands: Structural features and catalytic applications, Chem. Rev., 2009, vol. 109, p. 3677.
  6. Luconi, L., Gafurov, Z., Rossin, A., Tuci, G., Sinya-shin, O., Yakhvarov, D., and Giambastiani, G., Palladium(II) pyrazolyl–pyridyl complexes containing a sterically hindered N-heterocyclic carbene moiety for the Suzuki‑Miyaura cross-coupling reaction, Inorg. Chim. Acta, 2018, vol. 470, p. 100.
  7. Karaca, E.Ö., Akkoç, M., Yasar, S., and Özdemir, I., Pd-N-Heterocyclic carbene catalysed Suzuki‑Miyaura coupling reactions in aqueous medium, Arkivoc, 2018, vol. 5, p. 230.
  8. Şahin, N., PEPPSI-type 2-methyl-2-propenyl-functionalized N-heterocyclic carbene-palladium complexes: Synthesis, structural characterization and catalytic activity on Suzuki–Miyaura reaction, J. Mol. Struct., 2019, vol. 1177, p. 193.
  9. McGuinness, D.S., Cavell, K.J., Skelton, B.W., and White, A.H., Zerovalent palladium and nickel complexes of heterocyclic carbenes: Oxidative addition of organic halides, carbon-carbon coupling processes, and the Heck reaction, Organometallics, 1999, vol. 18, p. 1596.
  10. Inamoto, K., Kuroda, J., Sakamoto, T., and Hiroya, K., Catalytic activities of a bis(carbene)-derived nickel(II)-pincer complex in Kumada-Tamao-Corriu and Suzuki-Miyaura coupling reactions for the synthesis of biaryl compounds, Synthesis, 2007, vol. 18, p. 2853.
  11. Lee, C.C., Ke, W.C., Chan, K.T., Lai, C.L., Hu, C.H., and Lee, H.M., Nickel(II) complexes of bidentate N‑heterocyclic carbene/phosphine ligands: Efficient catalysts for suzuki coupling of aryl chlorides, Chem. Eur. J., 2007, vol. 13, p. 582.
  12. Xi, Z.X., Zhang, X.M., Chen, W.Z., Fu, S.Z., and Wang, D.Q., Synthesis and structural characterization of nickel(II) complexes supported by pyridine-functionalized N-heterocyclic carbene ligands and their catalytic acitivities for suzuki coupling, Organometallics, 2007, vol. 26, p. 6636.
  13. Han, F.S., Transition-metal-catalyzed Suzuki‑Miyaura cross-coupling reactions: A remarkable advance from palladium to nickel catalysts, Chem. Soc. Rev., 2013, vol. 42, p. 5270.
  14. Inamoto, K., Kuroda, J. I., Kwon, E., Hiroya, K., and Doi, T., Pincer-type bis(carbene)-derived complexes of nickel(II): Synthesis, structure, and catalytic activity, J. Organomet. Chem., 2009, vol. 694, p. 389.
  15. Inamoto, K., Kuroda, J. I., Hiroya, K., Noda, Y., Watanabe, M., and Sakamoto, T., Synthesis and catalytic activity of a pincer-type bis(imidazolin-2-ylidene) nickel(II) complex, Organometallics, 2006, vol. 25, p. 3095.
  16. Tu, T., Mao, H., Herbert, C., Xu, M., and Dötz, K.H., A pyridine-bridged bis-benzimidazolylidene pincer nickel(ii) complex: Synthesis and practical catalytic application towards Suzuki-Miyaura coupling with less-activated electrophiles, Chem. Commun., 2010, vol. 46, p. 7796.
  17. Xu, M., Li, X., Sun, Z., and Tu, T., Suzuki-Miyaura cross-coupling of bulky anthracenyl carboxylates by using pincer nickel N-heterocyclic carbene complexes: An efficient protocol to access fluorescent anthracene derivatives, Chem. Commun., 2013, vol. 49, p. 11539.
  18. Zhou, Y., Xi, Z., and Chen, W., Dinickel(II) complexes of bis(N-heterocyclic carbene) ligands containing [Ni2(μ-OH)] cores as highly efficient catalysts for the coupling of aryl chlorides, Organometallics, 2008, vol. 27, p. 5911.
  19. Chiu, P.L., Lai, C.L., Chang, C.F., Hu, C.H., and Lee, H.M., Synthesis, structural characterization, computational study, and catalytic activity of metal complexes based on tetradentate pyridine/N-heterocyclic carbene ligand, Organometallics, 2005, vol. 24, p. 6169.
  20. Wolf, J., Labande, A., Daran, J.C., and Poli, R., Nickel(II) complexes with bifunctional phosphine-imidazolium ligands and their catalytic activity in the Kumada-Corriu coupling reaction, J. Organomet. Chem., 2006, vol. 691, p. 433.
  21. Schneider, S.K., Rentzsch, C.F., Krueger, A., Raubenheimer, H.G., and Herrmann, W.A., Pyridin- and quinolinylidene nickel carbene complexes as effective catalysts for the Grignard cross-coupling reaction, J. Mol. Catal. A: Chem., 2007, vol. 265, p. 50.
  22. Xi, Z.X., Zhou, Y.B., and Chen, W.Z., Efficient Negishi coupling reactions of aryl chlorides catalyzed by binuclear and mononuclear nickel-N-heterocyclic carbene complexes, J Org. Chem., 2008, vol. 73, p. 8497.
  23. Sakhapov, I.F., Gafurov, Z.N., Babaev, V.M., Kurmaz, V.A., Mukhametbareev, R.R., Rizvanov, I.Kh., Sinyashin, O.G., and Yakhvarov, D.G., Electrochemical properties and reactivity of organonickel sigma-complex [NiBr(Mes)(bpy)] (Mes = 2,4,6-trimethylphenyl, bpy = 2,2'-bipyridine), Russ. J. Electrochem., 2015, vol. 51, p. 1061.
  24. Gafurov, Z.N., Sakhapov, I.F., Babaev, V.M., Dobrynin, A.B., Kurmaz, V.A., Metlushka, K.E., Rizvanov, I.K., Shaikhutdinova, G.R., Sinyashin, O.G., and Yakhvarov, D.G., Study of the reactivity of organonickel sigma-complexes towards nitriles, Russ. Chem. Bull., 2017, vol. 66, p. 254.
  25. Gafurov, Z.N., Musin, L.I., Sakhapov, I.F., Babaev, V.M., Musina, E.I., Karasik, A.A., Sinyashin, O.G., and Yakhvarov, D.G., The formation of secondary arylphosphines in the reaction of organonickel sigma-complex [NiBr(Mes)(bpy)], where Mes = 2,4,6-trimethylphenyl, bpy = 2,2'-bipyridine, with phenylphosphine, Phosphorus, Sulfur Silicon Relat. Elem., 2016, vol. 191, p. 1475.
  26. Sakhapov, I.F., Gafurov, Z.N., Babaev, V.M., Rizvanov, I.Kh., Dobrynin, A.B., Krivolapov, D.B., Khayarov, Kh.R., Sinyashin, O.G., and Yakhvarov, D.G., First example of organonickel complex bearing three cyclic substituents in the σ-bonded aromatic ring: Bromo[(2,2'-bipyridine)-2,4,6-tricyclohexylphenylnickel], Mendeleev Commun., 2016, vol. 26, p. 131.
  27. Gafurov, Z.N., Sinyashin, O.G., and Yakhvarov, D.G., Electrochemical methods for synthesis of organoelement compounds and functional materials, Pure Appl. Chem., 2017, vol. 89, p. 1089.
  28. Liu, B., Zhang, Y., Xu, D., and Chen, W., Facile synthesis of metal N-heterocyclic carbene complexes, Chem. Commun., 2011, vol. 47, p. 2883.
  29. Sheldrick, G.M., SHELXT: Integrating space group determination and structure solution, Acta Crystallogr., 2015, vol. 71, p. 3.
  30. Sheldrick, G.M., A short history of SHELX, Acta Crystallogr., 2007, vol. 64, p. 112.
  31. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., and Puschmann, H.J., OLEX2: A complete structure solution, refinement and analysis program, Appl. Cryst., 2009, vol. 42, p. 339.
  32. Iwasita, T. and Giordano, M.C., Kinetics of the bromine-tribromide-bromide redox processes on platinum electrodes in acetonitrile solutions, Electrochim. Acta, 1969, vol. 14, p. 1045.
  33. Khusnuriyalova, A.F., Petr, A., Gubaidullin, A.T., Sukhov, A.V., Morozov, V.I., Büchner, B., Kataev, V., Sinyashin, O.G., and Yakhvarov, D.G., Electrochemical generation and observation by magnetic resonance of superparamagnetic cobalt nanoparticles, Electrochim. Acta, 2018, vol. 260, p. 324.