Examples



mdbootstrap.com



 
Статья
2020

Structural and Morphological Features of Polycrystalline Aluminum Oxide Surface after Nanocoating with Titanium Oxide of Different Thickness


N. V. ZakharovaN. V. Zakharova, K. T. AkkulevaK. T. Akkuleva, A. A. MalyginA. A. Malygin
Российский журнал общей химии
https://doi.org/10.1134/S1070363220090133
Abstract / Full Text

Using the molecular layering method, titanium oxide coatings were synthesized on the surface of polycrystalline aluminum oxide plates by alternating treatment with titanium tetrachloride and water vapors. It was shown by means of diffuse reflection electron spectroscopy that at different nanocoating thickness, surface complexes differing in structure are formed: distorted octahedral (alumotitanate), those with tetrahedral titanium coordination, and polyhedra with anatase-like environment of the central atom. The surface morphology changes during the synthesis and after 600 layering cycles the titanium oxide coating covers the entire surface of the initial substrate.

Author information
  • St. Petersburg State Institute of Technology (Technical University), 190013, St. Petersburg, RussiaN. V. Zakharova, K. T. Akkuleva & A. A. Malygin
References
  1. Kondratenko, A.N. and Golubkova, T.A., Konstruktsii iz kompozitsionnykh materialov, 2009, no. 1, p. 24.
  2. Sokol, V.A., Yakovtseva, V.A., and Shiminovich, D., Dokl. BGUIR, 2012, no. 2, vol. 64, p. 21.
  3. Mazalov, Yu.A., Fedorov, A.V., and Bersh, A.V., Tekhnol. Metal., 2008, p. 8.
  4. Muslimov, A.E., Asadchikov, V.E., Butashin, A.V., Vlasov, V.P., Deryabin, A.N., Roshchin, B.S., Sulyanov, S.N., and Kanevsky, V.M., Crystallogr. Rep., 2016, vol. 61, no. 5, p. 730. https://doi.org/10.7868/S0023476116050143
  5. Savruk, E.V. and Smirnov, S.V., Izv. Vyssh. Uchebn. Zaved., Fizika, 2009, vol. 52, no. 11/2, p. 24.
  6. Malygin, A.A., Nanomaterialy: svoistva i ikh perspektivnye prilozheniya (Nanomaterials: Properties and Promising Applications), Moscow: Nauchnyi Mir, 2015, p. 84.
  7. Chiappim, W., Testoni, G.E., de Lima, J.S.B., Medeiros, H.S., Sávio Pessoa, R., Grigorov, K.G., Vieira, L., and Maciel, H.S., Brazil. J. Phys., 2016, vol. 46, no. 1, p. 56. https://doi.org/10.1007/s13538-015-0383-2
  8. Malkov, A.A., Sosnov, E.A., and Malygin, A.A., Russ. J. Appl. Chem., 2010, vol. 83, no. 9, p. 1511. https://doi.org/10.1134/S1070427210090016
  9. Sosnov, E.A., Malkov, A.A., and Malygin, A.A., Russ. J. Gen. Chem., 2010, vol. 80, no. 6, p. 1176. https://doi.org/10.1134/S1070363210060216
  10. Obvintseva, L.A., Ross. Khim. Zh., 2008, vol. 52, no. 2, p. 113.
  11. Melike, A., Meryem, S., Deniz, P., Erdogana, A., Saya, Z., Yildirimb, C., Birerbc, O., and Ozensoy, E., Appl. Surface Sci., 2014, vol. 318, p. 142. https://doi.org/10.1016/j.apsusc.2014.02.065
  12. Ramamoorthy, P., Dutta, P.K., and Akbar, S.A., J. Mater. Sci., 2003, no. 38, p. 4271. https://doi.org/10.1023/A:1026370729205
  13. Muthukrishnan, K., Vanaraja, M., Boomadevi, S., Karn, R.K., Rayappan, J.B., Singh, V., and Pandiyan, K., J. Mater. Sci. Mater. Electronics, 2015, p. 5135. https://doi.org/10.1007/s10854-015-3041-0
  14. Patil, S.J., Patil, A.V., Dighavkar, C.G., Thakare, K.S., Borase, R.Y., Nandre, S.J., Deshpande, N.G., and Ahire, R.R., Front. Mater. Sci., 2015, vol. 9, no. 1, p. 14. https://doi.org/10.1007/s11706-015-0279-7
  15. Artem’ev, Yu.A. and Ryabchuk, V.K., Vvedenie v geterogennyi fotokataliz (Introduction to Heterogeneous Photocatalysis), St. Petersburg: SPbGU, 1999.
  16. Kim, D.H., Kim, W.S., Kim, S., and Hong, S.H., ACS Appl. Mater. Interf., 2014, vol 6, no. 15, p. 11817. https://doi.org/10.1021/am501656r
  17. Mokrushin, A.S., Simonenko, E.P., Simonenko, N.P., Akkuleva, K.T., Antipov, V.V., Zaharova, N.V., Malygin, A.A., Bukunov, K.A., Sevastyanov, V.G., and Kuznetsov, N.T., Appl. Surface Sci., 2019, vol. 463, p. 197. https://doi.org/10.1016/j.apsusc.2018.08.208
  18. Galstyan, V., Comini, E., Faglia, G., and Sberveglieri, G., Sensors, 2013, vol. 13, no. 1, p. 14813. https://doi.org/10.3390/s131114813
  19. Malygin, A.A., Drozd, V.E., Malkov, A.A., and Smirnov, V.M., Chem. Vapor Depos., 2015, vol. 21, nos. 10–12, p. 216. https://doi.org/10.1002/cvde.201502013
  20. Koshtyal, Yu.M., Malkov, A.A., Vasilyeva, K.L., Zakharova, N.V., and Malygin, A.A., Russ. J. Gen. Chem., 2013, vol. 83, no. 2, p. 231. https://doi.org/10.1134/S1070363213020011
  21. Yavorskii, B.M., Detlaf, A.A., and Lebedev, A.K., Physics Handbook, Moscow: Oniks, Mir i Obrazovanie, 2006.
  22. Sosnov, E.A., Malkov, A.A., and Malygin, A.A., Russ. J. Phys. Chem., 2009, vol. 83, no. 4, p. 642. https://doi.org/10.1134/S0036024409040219
  23. Malygin, A.A., Malkov, A.A., and Sosnov, E.A., Russ. Chem. Bull., 2017, no. 11, p. 1939. https://doi.org/10.1007/s11172-017-1971-9
  24. Xu, M., Gao, Y., Moreno, E.M., Kunst, M., Muhler, M., Wang, Y., Idriss, H., and Wöll, C., Phys. Rev. Lett., 2011, vol. 106, p. 138. https://doi.org/10.1103/PhysRevLett.106.138302
  25. Li, S.C. and Diebold, U., J. Am. Chem. Soc., 2010, vol. 132, p. 64. https://doi.org/10.1021/ja907865t
  26. Glazkova, N.I., Nikitin, K.V., Kataeva, G.V., Rudakova, A.V., and Ryabchuk, V.K., Fundamental. Issled., 2013, no. 10, p. 1955.