Examples



mdbootstrap.com



 
Статья
2018

Reversible Solid Oxide Fuel Cell for Power Accumulation and Generation


D. A. Osinkin D. A. Osinkin , N. M. Bogdanovich N. M. Bogdanovich , S. M. Beresnev S. M. Beresnev , E. Yu. Pikalova E. Yu. Pikalova , D. I. Bronin D. I. Bronin , Yu. P. Zaikov Yu. P. Zaikov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193518080050
Abstract / Full Text

The anodic and cathodic polarization dependences for the oxygen electrode based on lanthanum-strontium manganite and the fuel Ni-cermet electrode are studied in the temperature range of 700–900°С in gas media that correspond to working conditions of a reversible fuel cell. The temporal behavior of these electrodes is studied in the course of periodic polarity changes of current with the density of 0.5 A/cm2. The electrode overvoltage is shown to be about 0.1 V in modes of power generation and water electrolysis at 900°С and the current density of 0.5 A/cm2. A single electrolyte supported tubular solid-oxide fuel cell was fabricated and tested in the fuel-cell and hydrogen-generation modes. It is found that at 900°С and overvoltage of 0.7 V, the cell generates the specific electric power of 0.4 W/cm2 when the 50% H2 + 50% H2O gas mixture is used as the fuel and air is used as the oxidizer. At the water electrolysis with the current density of 0.5 A/cm2, which under normal conditions corresponds to generation of about 0.2 and 0.1 L/h of hydrogen and oxygen, respectively, the consumed power is about 0.55 W/cm2. The efficiency of the conversion cycle electric power–hydrogen–electric power is 70–75%.

Author information
  • Institute of High Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620137, Russia

    D. A. Osinkin, N. M. Bogdanovich, S. M. Beresnev, E. Yu. Pikalova, D. I. Bronin & Yu. P. Zaikov

  • Ural Federal University, Yekaterinburg, 620002, Russia

    D. A. Osinkin, E. Yu. Pikalova, D. I. Bronin & Yu. P. Zaikov

References
  1. Jung, G.B., Chang, C.T., Yeh, C.C., Nguyen, X.V., Chan, S.H., Lin, C.Y., Yu, J.W., Lee, W.T., Chang, S.W., and Kao, I.C., Study of reversible solid oxide fuel cell with different oxygen electrode materials, Int. J. Hydrogen Energy, 2016, vol. 41, no. 5, p. 21802.
  2. Tao, Y., Nishino, H., Ashidate, S., Kokubo, H., Watanabe, M., and Uchida, H., Polarization properties of La0.6Sr0.4Co0.2Fe0.8O3-based double layer-type oxygen electrodes for reversible SOFCs, Electrochim. Acta, 2009, vol. 54, p. 3309.
  3. Zhang, X., O’Brien, J.E., O’Brien, R.C., and Housley, G.K., Durability evaluation of reversible solid oxide cells, J. Power Sources, 2013, vol. 242, p.566.
  4. Tiwari, P.K. and Basu, S., CeO2 and Nb2O5 modified Ni-YSZ anode for solid oxide fuel cell, Ionics, 2017, vol. 23, no. 10, p. 2571.
  5. Osinkin, D.A., Bogdanovich, N.M., Beresnev, S.M., and Zhuravlev, V.D. High-performance anode-supported solid oxide fuel cell with impregnated electrodes, J. Power Sources, 2015, vol. 288, p.20.
  6. Ionov, I.V., Solov’ev, A.A., Lebedinskii, A.M., Shipilova, A.V., Smolyanskii, E.A., Koval’chuk, A.N., and Lauk, A.L., Formation of NiO/YSZ functional anode layers of solid oxide fuel cells by magnetron sputtering, Russ. J. Electrochem., 2017, vol. 53, no. 6, p.670.
  7. Chen, G., Gao, Y., Luo, Y., and Guo, R., Effect of A site deficiency of LSM cathode on the electrochemical performance of SOFCs with stabilized zirconia electrolyte, Ceram. Int., 2017, vol. 43, no. 1, p. 1304.
  8. Pikalova, E.Yu., Bogdanovich, N.M., Kolchugin, A.A., Osinkin, D.A., and Bronin, D.I., Electrical and electrochemical properties of La2NiO4 + δ-based cathodes in contact with Ce0.8Sm0.2O2–δ electrolyte, Procedia Engineering, 2014, vol. 98, p.105.
  9. Tahini, H.A., Tan, X., Zhou, W., Zhu, Z., Schwingenschlogl, U., and Smith, S.C., Sc and Nb dopants in SrCoO3 modulate electronic and vacancy structures for improved water splitting and SOFC cathodes, Energy Storage Mater., 2017, vol. 9, p.229.
  10. Ye, X.F., Wen, Y.B., Yang, S.J., Lu, Y., Luo, W.H., Wen, Z.Y., and Meng, J.B., Study of CaZr0.9In0.1O3 - δ based reversible solid oxide cells with tubular electrode supported structure, Int. J. Hydrogen Energy, 2017, vol. 42, no. 23, p. 23189.
  11. Bi, L., Boulfrad, S., and Traversa, E., Reversible solid oxide fuel cells (R-SOFCs) with chemically stable proton-conducting oxides, Solid State Ionics, 2015, vol. 275, p.101.
  12. Osinkin, D.A., Bronin, D.I., Beresnev, S.M., Bogdanovich, N.M., Zhuravlev, V.D., Vdovin, G.K., and Demyanenko, T.A., Thermal expansion, gas permeability, and conductivity of Ni-YSZ anodes produced by different techniques, J. Solid State Electrochem., 2014, vol. 18, no. 1, p.149.
  13. Osinkin, D.A., Long-term tests of Ni–Zr0.9Sc0.1O1.95 anode impregnated with CeO2 in H2 + H2O gas mixtures, Int. J. Hydrogen Energy, 2016, vol. 41, no. 39, p. 17577.
  14. Kurteeva, A.A., Beresnev, S.M., Osinkin, D.A., Kuzin, B.L., Vdovin, G.K., Zhuravlev, V.D., Bogdanovich, N.M., Bronin, D.I., Pankratov, A.A., and Yaroslavtsev, I.Yu., Single solid–oxide fuel cells with supporting Ni-cermet anode, Russ. J. Electrochem., 2011, vol. 47, no. 12, p. 1381.
  15. Wang, J., Meng, F., Xia, T., Shi, Z., Lian, J., Xu, C., Zhao, H., Bassat, J.M., and Grenier, J.C., Superior electrochemical performance and oxygen reduction kinetics of layered perovskite PrBaxCo2O5 + δ (x = 0.90–1.0) oxides as cathode materials for intermediatetemperature solid oxide fuel cells, Int. J. Hydrogen Energy, 2014, vol. 39, no. 32, p. 18392.
  16. Yi, K., Sun, L., Li, Q., Xia, T., Huo, L., Zhao, H., Li, J., Lu, Z., Bassat, J.M., Rougier, A., Fourcade, S., and Grenier, J.C., Effect of Nd-deficiency on electrochemical properties of NdBaCo2O6 - δ cathode for intermediate-temperature solid oxide fuel cells, Int. J. Hydrogen Energy, 2016, vol. 41, no. 24, p. 10228.
  17. Osinkin, D.A., Kuzin, B.L., and Bogdanovich, N.M., Time dependence of electrochemical characteristics of high performance CeO2-modified Ni-cermet electrode in multicomponent gas mixtures H2 + H2O + CO + CO2, Solid State Ionics, 2013, vol. 251, p.66.
  18. Hauch, A., Mogensen, M., and Hagen, A., Ni/YSZ electrode degradation studied by impedance spectroscopy—effect of p(H2O), Solid State Ionics, 2011, vol. 192, no. 1, p.547.
  19. Osinkin, D.A. and Bogdanovich, N.M., Evolution of activity of impregnated with CeO2 Ni-SSZ anodes of fuel cells, Russ. J. Electrochem., 2016, vol. 52, no. 7, p.606.
  20. Matsui, T., Kishida, R., Kim, J.Y., Muroyama, H., and Eguchi, K., Performance deterioration of Ni–YSZ anode induced by electrochemically generated steam in solid oxide fuel cells, J. Electrochem. Soc., 2010, vol. 157, no. 5, p. B776.
  21. Osinkin, D.A., Kuzin, B.L., and Bogdanovich, N.M., Effect of oxygen activity and water partial pressure to degradation rate of Ni-cermet electrode contacting Zr0.84Y0.16O1.92 electrolyte, Russ. J. Electrochem., 2010, vol. 46, no. 1, p.41.
  22. Tan, Y., Wang, A., Jia, L., Yan, D., Chi, B., Pu J., and Li, J., High-performance oxygen electrode for reversible solid oxide cells with power generation and hydrogen production at intermediate temperature, Int. J. Hydrogen Energy, 2017, vol. 42, no. 7, p. 4456.