Статья
2019

Synthesis of Novel NiFe2O4 Nanospheres for High Performance Pseudocapacitor Applications


A. Ghasemi A. Ghasemi , M. Kheirmand M. Kheirmand , H. Heli H. Heli
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519020022
Abstract / Full Text

Synthesis of monodispersed NiFe2O4 nanospheres by a simple method was reported. Structure, morphology and characterization of the nanospheres were performed using field emission scanning electron microscopy, X-ray diffraction and FTIR spectroscopy. Electrochemical properties of the prepared nano-spheres were studied in order to realize their suitability and susceptibility as an electrode material for supercapacitor applications. NiFe2O4 nanospheres showed a high specific capacitance of 122 F g−1 and a great specific energy of 16.9 Wh kg−1 at a high current density of 8.0 A g−1. The maximum specific capacity of the nanospheres was even more, which can reach 137.2 F g−1 at 4 A g−1 of current density. The results showed an excellent long-term cycling stability for the NiFe2O4 nanospheres-based electrodes. The capacitance did not decrease, compared to the initial value during 100 galvanostatic charge-discharge cycles.

Author information
  • Department of Chemistry, School of Basic Sciences, Yasouj University, Yasouj, Iran

    A. Ghasemi & M. Kheirmand

  • Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

    H. Heli

References
  1. Simon, P. and Gogotsi, Y., Materials for electrochemical capacitors, Nature Mater., 2008, vol. 7, no. 11, p. 845.
  2. Miller, J.R. and Simon, P., Electrochemical capacitors for energy management, Sci. Mag., 2008, vol. 321, no. 5889, p. 651.
  3. Sattarahmady, N., Dehdari Vais, R., and Heli, H., Fibroin nanofibrils as an electrode material for electrical double-layer biosupercapacitor applications, J. Appl. Electrochem., 2015, vol. 45, p. 577.
  4. Li, Y., Xie, H., Wang, J., and Chen, L., Preparation and electrochemical performances of α-MnO2 nanorod for supercapacitor, Mater. Lett., 2011, vol. 65, no. 2, p. 403.
  5. Sattarahmady, N., Parsa, A., and Heli, H., Albumin nanoparticle-coated carbon composite electrode for electrical double-layer biosupercapacitor applications, J. Mater. Sci., 2013, vol. 48, p. 2346.
  6. Shiri, N., Sattarahmady, N., and Heli, H., Iron oxyhydroxide cobalt hexacyanoferrate coaxial nanostructure: Synthesis, characterization and pseudocapacitive behavior, J. Electroanal. Chem., 2014, vol. 719, p. 143.
  7. Zhang, L.L. and Zhao, X., Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev., 2009, vol. 38, no. 9, p. 2520.
  8. Liu, C., Li, F., Ma, L.P., and Cheng, H.M., Advanced materials for energy storage, Adv. Mater., 2010, vol. 22, no. 8.
  9. Pullar, R.C., Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics, Progress Mater. Sci., 2012, vol. 57, no. 7, p. 1191.
  10. Mathew, D.S. and Juang, R.S., An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions, Chem. Eng. J., 2007, vol. 129, no. 1–3, p. 51.
  11. Sattarahmady, N., Heidari, M., Zare, T., Lotfi, M., and Heli, H., Zinc-nickel ferrite nanoparticles as a contrast agent in magnetic resonance imaging, Appl. Magn. Reson., 2016, vol. 47, p. 925.
  12. Sattarahmady, N., Zare, T., Mehdizadeh, A.R., Azarpira, N., Heidari, M., Lotfi, M., and Heli, H., Dextrin-coated zinc substituted cobalt-ferrite nanoparticles as an MRI contrast agent: In vitro and in vivo imaging studies, Colloids Surf. B: Biointerfaces, 2015, vol. 129, p. 15.
  13. Senthilkumar, B., Sankar, K.V., Sanjeeviraja, C., and Selvan, R.K., Synthesis and physico-chemical property evaluation of PANI-NiFe2O4 nanocomposite as electrodes for supercapacitors, J. Alloys Compounds, 2013, vol. 553, p. 350.
  14. Sen, P. and De, A., Electrochemical performances of poly (3, 4-ethylene dioxythiophene)—NiFe2O4 nano-composite as electrode for supercapacitor, Electrochim. Acta, 2010, vol. 55, no. 16, p. 4677.
  15. Pawar, D., Pawar, S., Patil, P., and Kolekar, S., Synthesis of nanocrystalline nickel-zinc ferrite (Ni0.8Zn0.2Fe2O4) thin films by chemical bath deposition method, J Alloys Compounds, 2011, vol. 509, no. 8, p. 3587.
  16. Gunjakar, J., More, A., Shinde, V., and Lokhande, C., Synthesis of nanocrystalline nickel ferrite (NiFe2O4) thin films using low temperature modified chemical method, J. Alloys Compounds, 2008, vol. 465, nos. 1–2, p. 468.
  17. Senthilkumar, B., Selvan, R.K., Vinothbabu, P., Perelshtein, I., and Gedanken, A., Structural, magnetic, electrical and electrochemical properties of NiFe2O4 synthesized by the molten salt technique, Mater. Chem. Phys., 2011, vol. 130, no. 1–2, p. 285.
  18. Yu, Z.Y., Chen, L.F., and Yu, S.H., Growth of NiFe2O4 nanoparticles on carbon cloth for high performance flexible supercapacitors, J. Mater. Chem. A, 2014, vol. 2, p. 10889.
  19. Anwar, S., Muthu, K.S., Ganesh, V., and Lakshminarasimhan, N., A comparative study of electrochemical capacitive behavior of NiFe2O4 synthesized by different routes, J. Electrochem. Soc., 2011, vol 158, p. A976.
  20. Xu, H., Wang, X.L., Liu, H., Wang, J.X., Dong, X.T., Liu, G.X., Yu, W.S., Yang, Y., and Zhang, H.B., Facile synthesis of Fe3O4/NiFe2O4 nanosheets with enhanced lithium-ion storage by one-step chemical dealloying, J. Mater. Sci., 2018, vol. 53, p. 15631.
  21. Pawar, D.K., Shaikh, J.S., Pawar, B.S., Pawar, S.M., Patil, P.S., and Kolekar, S.S., Synthesis of hydrophilic nickel zinc ferrite thin films by chemical route for supercapacitor application, J. Porous Mater., 2012, vol. 19, p. 649.
  22. Wang, W., Hao, Q., Lei, W., Xia, X., and Wang, X., Ternary nitrogen-doped graphene/nickel ferrite/polyaniline nanocomposites for high-performance supercapacitors, J. Power Sources, 2014, vol. 269, p. 250.
  23. Sen, P. and De, A., Electrochemical performances of poly(3,4-ethylenedioxythiophene)—NiFe2O4 nano-composite as electrode for supercapacitor, Electrochim. Acta, 2010, vol. 55, p. 4677.
  24. Blanco-Gutierrez, V., Saez-Puche, R., and Torralvo-Fernandez, M.J., Super paramagnetism and interparticle interactions in ZnFe2O4 nanocrystals, J. Mater. Chem., 2012, vol. 22, no. 7, p. 2992.
  25. Guo, P., Zhang, G., Yu, J., Li, H., and Zhao, X., Controlled synthesis, magnetic and photocatalytic properties of hollow spheres and colloidal nanocrystal clusters of manganese ferrite, Colloids Surf. A: Physicochem. Eng. Aspects, 2012, vol. 395, p. 168.
  26. Wang, J., Chen, Q., Hou, B., and Peng, Z., Synthesis and magnetic properties of single crystals of MnFe2O4 nanorods, Europ. J. Inorg. Chem., 2004, vol. 2004, no. 6, p. 1165.
  27. Fan, H.M., Yi, J.B., Yang, Y., Kho, K.W., Tan, H.R., Shen, Z.X., Ding, J., Sun, X.W., Olivo, M.C., and Feng, Y.P., Single-crystalline MFe2O4 nano-tubes/nanorings synthesized by thermal transformation process for biological applications, ACS Nano, 2009, vol. 3, no. 9, p. 2798.
  28. Cui, L., Guo, P., Zhang, G., Li, Q., Wang, R., Zhou, M., Ran, L., and Zhao, X., Facile synthesis of cobalt ferrite submicrospheres with tunable magnetic and electrocatalytic properties, Colloids Surfaces A: Physicochem. Eng. Aspects, 2013, vol. 423, p. 170.
  29. Bao, N., Shen, L., Wang, Y.H.A., Ma, J., Mazumdar, D., and Gupta, A., Controlled growth of monodisperse self-supported super paramagnetic nanostructures of spherical and rod-like CoFe2O4 nanocrystals, J. Am. Chem. Soc., 2009, vol. 131, no. 36, p. 12900.
  30. Xu, Y., Wei, J., Yao, J., Fu, J., and Xue, D., Synthesis of CoFe2O4 nanotube arrays through an improved solgel template approach, Mater. Lett., 2008, vol. 62, nos. 8–9, p. 1403.
  31. Zhang, S., Dong, D., Sui, Y., Liu, Z., Wang, H., Qian, Z., and Su, W., Preparation of core shell particles consisting of cobalt ferrite and silica by solgel process, J. Alloys Compounds, 2006, vol. 415, nos. 1–2, p. 257.
  32. Aijun, H., Juanjuan, L., Mingquan, Y., Yan, L., and Xinhua, P., Preparation of nano-MnFe2O4 and its catalytic performance of thermal decomposition of ammonium perchlorate, Chinese J. Chem. Eng., 2011, vol. 19, no. 6, p. 1047.
  33. Sartale, S. and Lokhande, C., A room temperature two-step electrochemical process for large area nano-crystalline ferrite thin films deposition, J. Electroceram., 2005, vol. 15, no. 1, p. 35.
  34. Yao, X., Zhao, C., Kong, J., Wu, H., Zhou, D., and Lu, X., Dopamine-assisted one-pot synthesis of zinc ferrite-embedded porous carbon nanospheres for ultrafast and stable lithium ion batteries, Chem. Commun., 2014, vol. 50, no. 93, p. 14597.
  35. Conway, B.E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer Science & Business Media, 2013.
  36. Kuo, Sh.-L., Lee, J.-Fu., and Wu, N.-L., Study on pseudocapacitance mechanism of squeous MnFe2O4 supercapacitor, J. Electrochem. Soc., 2007, vol. 154, p. A34.
  37. Barsoukov, E. and Macdonald, J.R., Impedance Spectroscopy: Theory, Experiment, and Applications, New Jersey: John Wiley & Sons, 2005.
  38. Sattarahmady, N. and Heli, H., A non-enzymatic amperometric sensor for glucose based on cobalt oxide nanoparticles, J. Experim. Nanosci., 2012, vol. 7, p. 529.
  39. Heli, H., Majdi, S., Sattarahmady, N., and Parsaei, A., Electrocatalytic oxidation and sensitive detection of deferoxamine on nanoparticles of Fe2O3 NaCo[Fe(CN)6]-modified paste electrode, J. Solid State Electrochem., 2010, vol. 14, p. 1637.
  40. Jadhav, V.V., Zate, M.K., Liu, S., Naushad, M., Mane, R.S., Hui, K.N., and Han, S.-H., Mixed-phase bismuth ferrite nanoflake electrodes for supercapacitor application, Appl. Nanosci., 2016, vol. 6, p. 511.
  41. Wang, R., Li, Q., Cheng, L., Li, H., Wang, B., Zhao, X.S., and Guo, P., Electrochemical properties of manganese ferrite-based supercapacitors in aqueous electrolyte: the effect of ionic radius, Colloids Surf. A: Physicochem. Eng. Aspects, 2014, vol. 457, p. 94.
  42. Ham, D., Chang, J., Pathan, S.H., Kim, W.Y., Mane, R.S., Pawar, B.N., Joo, O.-S., Chung, H., Yoon, M.-Y., and Han, S.-H., Electrochemical capacitive properties of spray-pyrolyzed copper-ferrite thin films, Current Appl. Phys., 2009, vol. 9, p. S98.
  43. Kuo, S.-L. and Wu, N.-L., Electrochemical characterization on MnFe2O4/carbon black composite aqueous supercapacitors, J. Power Sources, 2006, vol. 162, p. 1437.
  44. Wu, N.-L. and Chen, Y.-H., Characterization of a new type of asymmetric supercapacitors: LiMn2O4/MnFe2O4, ECS Trans., 2008, vol. 16, p. 223.
  45. Santos-Pena, J., Crosnier, O., and Brousse, T., Nano-sized α-LiFeO2 as electrochemical supercapacitor electrode in neutral sulfate electrolytes, Electrochim. Acta, 2010, vol. 55, p. 7511.
  46. Kale, M.R. and Tendolkar, N.P., Super-capacitive properties of nanocrystalline copper ferrite thin films deposited by environment friendly electrodeposition method, Int. J. Sci. Eng. Res., 2013, vol. 4, p. 12.
  47. Lin, Y.-P. and Wu, N.-L., Characterization of MnFe2O4/LiMn2O4 aqueous asymmetric supercapacitor, J. Power Sources, 2011, vol. 196, p. 851.
  48. Kuo, S.-L., Lee, J.-F., and Wu, N.-L., Study on pseudocapacitance mechanism of aqueous MnFe2O4 supercapacitor, J. Electrochem. Soc., 2007, vol. 154, p. A34.
  49. Senthilkumar, B., Selvan, R.K., Vinothbabu, P., Perelshtein, I., and Gedanken, A., Structural, magnetic, electrical and electrochemical properties of NiFe2O4 synthesized by the molten salt technique, Mater. Chem. Phys., 2011, vol. 130, p. 285.
  50. Bhujun, B., Tan, M.T.T., and Shanmugam, A.S., Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications, Results Phys., 2017, vol. 7, p. 345.
  51. He, P., Yang, K., Wang, W., Dong, F., Du, L., and Deng, Y., Reduced graphene oxide-CoFe2O4 composites for supercapacitor electrode, Russ. J. Electrochem., 2013, vol. 49, p. 359.