Статья
2022

Photoelectrochemical Characterization of Nano-Crednerite AgMnO2 Synthesized by Auto-Ignition: a Novel Photocatalyst for H2 Evolution


N. Koriche N. Koriche , R. Brahimi R. Brahimi , B. Bellal B. Bellal , M. Trari M. Trari
Российский электрохимический журнал
https://doi.org/10.1134/S1023193522070072
Abstract / Full Text

AgMnO2 nanocrystallites (31 nm) were prepared by sol-gel auto-ignition at 400°C in air. The crednerite characterized by X-ray diffraction (XRD) showed a single phase, crystallizing in a monoclinic unit cell (SG: C2/m). The refinement was made by isotypy with CuMnO2. The oxide is a narrow band-gap semiconductor with an indirect transition at 1.43 eV. The electrical conduction occurs predominantly by small polaron hopping between mixed valences Ag2+/+ in the (a, b) planes with an activation energy of 0.35 eV. The density of holes (NA = 2 × 1015 cm–3) and their mobility (μh = 0.8 × 10–4 m–2 V–1 s–1) indicate a conduction being thermally activated. The oxygen insertion in the layered crystal lattice induces p-type conductivity, a fact confirmed by the electrochemical measurements. The flat band potential (Efb = –0.04 V) indicates a cationic character of both valence and conduction bands deriving mostly from Ag+ 4d-orbital. The electrochemical impedance spectroscopy shows the predominance of the bulk contribution followed by diffusion of O2– species. The energetic band diagram of AgMnO2 established from the photoelectrochemical study, predicts a spontaneous hydrogen formation; a rate evolution of 39 µmol g–1 min–1 and a power conversion of 0.37% were obtained under visible light irradiation (27 mW cm–2).

Author information
  • Faculty of Sciences, University M’hamed Bougara (UMBB), 35000, Boumerdes, Algeria

    N. Koriche

  • Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, University of Sciences and Technology (USTHB), 16111, Algiers, Algeria

    N. Koriche, R. Brahimi, B. Bellal & M. Trari

References
  1. Kolotygin, V.A., Viskup, A.P., Pivak, E.V., and Kharton, V.V., The mixed electronic and ionic conductivity of perovskite-like Ba1 – xSrxFe1 –yTiyO3 – δ and BaTi0.5Fe0.5 – zCezO3 – δ solid solutions, Russ. J. Electrochem., 2020, vol. 56, p. 110.
  2. Lomonova, E.E., Agarkov, D.A., Borik, M.A., Eliseeva, G.M., Kulebyakin, A.V., Kuritsyna, I.E., Milovich, F.O., Myzina, V.A., Osiko, V.V., Chislova, A.S., and Tabachkova, N.Y., ZrO2–Sc2O3 solid electrolytes doped with Yb2O3 or Y2O3, Russ. J. Electrochem., 2020, vol. 56, p. 127.
  3. Galliano, S., Bella, F., Bonomo, M., Viscardi, G., Gerbaldi, C., Boschloo, G., and Barolo, C., Hydrogel electrolytes based on xanthan gum: green route towards stable dye-sensitized solar cells, J. Nanomater., 2020, vol. 10, p. 1585.
  4. Podsiadły-Paszkowska, A., Tranca, I., and Szyja, B.M., Tuning the hematite (110) surface properties to enhance Its efficiency in photoelectrochemistry, J. Phys. Chem. C, 2019, vol. 123, p. 5401.
  5. Mariotti, N., Bonomo, M., Fagiolari, L., Barbero, N., Gerbaldi, C., Bella, F., and Barolo, C., Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells, Green Chem., 2020, vol. 22, p. 7168.
  6. Pulli, E., Rozzi, E., and Bella, F., Transparent photovoltaic technologies: current trends towards upscaling, Energy Convers. Manag., 2020, vol. 219, p. 112982.
  7. Gouda, A., Liu, T., Byers, J.C., Augustynski, J., and Santato, C., Best practices in photoelectrochemistry, J. Power Sources, 2021, vol. 482, p. 228958.
  8. Baiano, C., Schiavo, E., Gerbaldi, C., Bella, F., Meligrana, G., Talarico, G., Maddalena, P., Pavone, M., and Muñoz-García, A.B., Role of surface defects in CO2 adsorption and activation on CuFeO2 delafossite oxide, J. Mol. Catal., 2020, vol. 496, p. 111181.
  9. Lyskov, N.V., Kotova, A.I., Istomin, S.Y., Mazo, G.N., and Antipov, E.V., Electrochemical properties of electrode materials based on Pr5Mo3O16+δ1, Russ. J. Electrochem., 2020, vol. 56, p. 93.
  10. Morozova, A.V., Istomin, S.Y., Strebkov, D.A., Lyskov, N.V., Abdullaeva, M.M., and Antipov, E.V., New electrode materials for symmetrical solid oxide fuel cells based on perovskites (La,Ca)(Fe,Co,Mg,Mo)O3 – δ1, Russ. J. Electrochem., 2020, vol. 56, p. 100.
  11. Benko, F.A. and Koffyberg, F.P., Opto-electronic properties of p- and n-type delafossite CuFeO2, J. Phys. Chem. Solids, 1987, vol. 48, p. 431.
  12. Ruttanapun, C., Kosalwat, W., Rudradawong, C., Jindajitawat, P., Buranasiri, P., Naenkieng, D., Boonyopakorn, N., Harnwunggmoung, A., Thowladda, W., Neeyakorn, W., Thanachayanont, C., Charoenphakdee, A., and Wichainchai, A., Reinvestigation thermoelectric properties of CuAlO2, Energy Procedia, 2014, vol. 56, p. 65.
  13. Satish, B. and Srinivasan, R., Soft chemistry synthesis and characterization of nano p-type transparent semiconducting delafossite oxides of type A+B3+O2 where A = Cu; B = Al, Ga, and Cr, Mater. Today Proc., 2018, vol. 5, p. 2401.
  14. Johna, M., Aßbichler, S.H., Park, S.H., Ullrich, A., Benka, G., Petersen, N., Rettenwander, D., and Horn, S.R., Low-temperature synthesis of CuFeO2 (delafossite) at 70°C: a new process solely by precipitation and ageing, J. Solid State Chem., 2016, vol. 233, p. 390.
  15. Kodintsev, I., Tolstoy, V., and Lobinsky, A., Room temperature synthesis of composite nanolayer consisting of AgMnO2 delafossitenanosheets and Ag nanoparticles by successive ionic layer deposition and their electrochemical properties, Mater. Lett., 2017, vol. 196, p. 54.
  16. Svintsitskiy, D.A., Kardash, T.Y., and Boronin, A.I., Surface dynamics of mixed silver-copper oxide AgCuO2 during X-ray photoelectron spectroscopy study, Appl. Surf. Sci., 2019, vol. 463, p. 300.
  17. Poienar, M., Banica, R., Sfirloaga, P., Ianasi, C., Mihali, C.V., and Vlazan, P., Microwave-assisted hydrothermal synthesis and catalytic activity study of crednerite-type CuMnO2 materials, Ceram. Int., 2018, vol. 44, p. 6157.
  18. Chen, H.Y., Lin, Y.C., and Lee, J.S., Crednerite-CuMnO2 thin films prepared using atmospheric pressure plasma annealing, Appl. Surf. Sci., 2015, vol. 338, p. 113.
  19. Kato, S., Takagi, N., Saito, K., and Ogasawara, M., Synthesis of delafossite-type Ag0.9MnO2 by the precipitation method at room temperature, ACS Omega, 2019, vol. 4, p. 9763.
  20. Lide, D.R., Baysinger, G., Berger, L.I., Kehiaian, H.V., Roth, D.L., Zwillinger, D., Goldberg, R.N., and Haynes, W.M., Handbook of Chemistry and Physics, 90th ed., Boca Raton, FL: CRC Press, 2010.
  21. Trari, M., Topfer, J., Doumerc, J.P., Pouchard, M., Ammar, A., and Hagenmuller, P., Room temperature chemical oxidation of delafossite-type oxides, J. Solid State Chem., 1994, vol. 111, p. 104.
  22. Berthelot, R., Pollet, M., Doumerc, J.P., and Delmas, C., First experimental evidence of anew D4-AgCoO2 delafossite stacking, Inorg. Chem., 2011, vol. 50, p. 4529.
  23. Koriche, N., Bessekhouad, Y., Bouguelia, A., and Trari, M., Preparation and physical properties of CuxWO3, Phys. B, 2012, vol. 407, p. 1175.
  24. Koriche, N., Bouguelia, A., Aider, A., and Trari, M., Photocatalytic hydrogen evolution over delafossite CuAlO2, Int. J. Hydrogen Energy, 2005, vol. 30, p. 693.
  25. Töpfer, J., Trari, M., Gravereau, P., Chaminade, J.P., and Doumerc, J.P., Crystal growth and reinvestigation of the crystal structure of crednerite CuMnO2, Z. Kristallogr., 1994, vol. 210, p. 184.
  26. Wang, L., Arif, M., Duan, G., Chen S., and Liu, X., A high performance quasi-solid-statesupercapacitor based on CuMnO2 nanoparticles, J. Power Sources, 2017, vol. 355, p. 53.
  27. Koriche, N., Bouguelia, A., Mohammedi, M., and Trari, M., Synthesis and physical properties of new oxide AgMnO2, J. Mater. Sci., 2007, vol. 42, p. 4778.
  28. Mahroua, O., Alili, B., Ammari, A., Bellal, B., Bradai, D., and Trari, M., On the physical and semiconducting properties of the crednerite AgMnO2 prepared by sol-gel auto-ignition, Ceram. Int., 2019, 45, p. 10511.
  29. Jiang, H.F., Gui, C.Y., Zhu, Y.Y., Wu, D.J., Sun, S.P., Xiong, C., and Zhu, X.B., First-principle study on O–A–O dumbbell of delafossite crystal, J. Alloys Compd., 2014, vol. 582, p. 64.
  30. Pankove, J.I., Optical Processes in Semiconductors, 1st ed., New York: Dover Publ., 1975.
  31. Bosman, A.J. and Daal, H.J., Small-polaron versus band conduction in some transition-metal oxides, Adv. Phys., 1970, vol. 19, p. 1.
  32. Trari, M., Töpfer, J., Dordor, P., Grenier, J.C., Pouchard, M., and Doumerc, J.P., Preparation and physical properties of the solid solutions Cu1 + xMn1 − xO2 (0 ≤ x ≤ 0.2), J. Solid State Chem., 2005, vol. 178, p. 2751.
  33. Bellal, B., Saadi, S., Koriche, N., Bouguelia, A., and Trari, M., Physical properties of the delafossite LaCuO2, Phys. Chem. Solids, 2009, vol. 70, p. 1132.
  34. Koriche, N., Bouguelia, A., and Trari, M., Photocatalytic hydrogen production over new oxide LaCuO2.62, Int. J. Hydrogen Energy, 2006, vol. 31, p. 1196.
  35. Chen, H.Y. and Hsu, D.J., Characterization of crednerite-Cu1.1Mn0.9O2 films prepared using sol–gel processing, Appl. Surf. Sci., 2014, vol. 290, p. 161.
  36. Saadi, S., Bouguelia, A., and Trari, M., Photocatalytic hydrogen evolution over CuCrO2, Solar Energy, 2006, vol. 80, p. 272.