Статья
2021

A Polymer Layer of Switchable Resistance for the Overcharge Protection of Lithium-Ion Batteries


E. V. Beletskii E. V. Beletskii , A. Yu. Kal’nin A. Yu. Kal’nin , D. A. Luk’yanov D. A. Luk’yanov , M. A. Kamenskii M. A. Kamenskii , D. V. Anishchenko D. V. Anishchenko , O. V. Levin O. V. Levin
Российский электрохимический журнал
https://doi.org/10.1134/S1023193521100050
Abstract / Full Text

Abstract—The polymer layer based on a nickel complex with salen-type ligand is proposed for protecting rechargeable lithium-ion batteries from overcharge. This polymer has a switchable resistance and can pass into the insulator state when the threshold potential is exceeded. This allows avoiding the development of side processes such as electrolyte decomposition on the cathode. The effect of the polymer layer was tested on model systems and on prototypes of lithium-ion batteries.

Author information
  • St. Petersburg State University, Institute of Chemistry, St. Petersburg, Russia

    E. V. Beletskii, A. Yu. Kal’nin, D. A. Luk’yanov, M. A. Kamenskii, D. V. Anishchenko & O. V. Levin

References
  1. Omariba, Z.B., Zhang, L., and Sun, D., Review on health management system for lithium-ion batteries of electric vehicles, Electronics, 2018, vol. 7, no. 5, p. 72.
  2. Borovikov, P.V., Stepichev, M.M., Getmanova, N.Yu., and Shul’ga, R.N., Electricity storage device based on lithium-ion batteries of megawatt power class, Elektrotekh., Elektroenerg., Elektrotekh. Prom-st., 2017, no. 3, p. 38.
  3. Gruzdev, A.I., Experience in creating batteries based on high-capacity lithium-ion batteries, Elektrokhim. Energ., 2011, no. 11(3), p. 128.
  4. Gerasimov, A.S., Gurikov, O.V., Kudryavtsev, E.N., Kudryavtsev, N.A., Sibiryakov, R.V., and Shavlovsky, S.V., Application of energy storage devices using lithium ion storage batteries in operating direct current systems, Izvestiya NTTs edinoi energeticheskoi sistemy, 2011, no. 73(2), p. 26.
  5. Lisbona, D. and Snee, T., A review of hazards associated with primary lithium and lithium-ion batteries, Process Saf. Environ. Prot., 2011, vol. 89, p. 434.
  6. Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., and Chen, C., Thermal runaway caused fire and explosion of lithium ion battery, J. Power Sources, 2012, vol. 208, p. 210.
  7. Lu, L., Han, X., Li, J., Hua, J., and Ouyang, M., A review on the key issues for lithium-ion battery management in electric vehicles, J. Power Sources, 2013, vol. 226, p. 272.
  8. Lipu, M.S.H., Hannan, M.A., Hussain, A., Hoque, M.M., Ker, Pin J., Saad, M.H.M., and Ayob, A., A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations, J. Cleaner Prod., 2018, vol. 205, p. 115.
  9. Zhu, J., Wierzbicki, T., and Li, W., A review of safety-focused mechanical modeling of commercial lithium-ion batteries, J. Power Sources, 2018, vol. 378, p. 153.
  10. Wen, J., Yu, Y., and Chen, C., A Review on lithium-ion batteries safety issues: Existing problems and possible solutions, Mater. Express, 2012, vol. 2, no. 3, p. 197.
  11. Liu, K., Liu, Y., Lin, D., Pei, A., and Cui, Yi., Materials for lithium-ion battery safety, Sci. Adv., 2018, vol. 4, no. 6, p. eaas9820.
  12. Aurbach, D., Gamolsky, K., Markovsky, B., Gofer, Y., Schmidt, M., and Heider, U., On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries, Electrochim. Acta, 2002, vol. 47, no. 9, p. 1423.
  13. Matsuo, Y., Fumita, K., Fukutsuka, T., Sugie, Y., Koyama, H., and Inoue, K., Butyrolactone derivatives as electrolyte additives for lithium-ion batteries with graphite anodes, J. Power Sources, 2003, vols. 119–121, p. 373.
  14. Komaba, S., Kaplan, B., Ohtsuka, T., Kataoka, Y., Kumagai, N., and Groult, H., Inorganic electrolyte additives to suppress the degradation of graphite anodes by dissolved Mn(II) for lithium-ion batteries, J. Power Sources, 2003, vol. 119–121, p. 378.
  15. McMillan, R., Slegr, H., Shu, Z.X., and Wang, W., Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes, J. Power Sources, 1999, vol. 81–82, p. 20.
  16. Halpert, G., Surampudi, S., Shen, D., Huang, C.-K., Narayanan, S., Vamos, E., and Perrone, D., Space Electrochemical Research and Technology, 1993, vol. 1, p. 85.
  17. Moshurchak, L.M., Buhrmester, C., and Dahn, J.R., Triphenylamines as a class of redox shuttle molecules for the overcharge protection of lithium-ion cells, J. Electrochem. Soc., 2008, vol. 155, no. 2, p. A129.
  18. Moshurchak, L.M., Lamanna, W.M., Bulinski, M.L., Wang, R.R., Garsuch, R., Jiang, Ju., Magnuson, D., Triemert, M., and Dahn, J.R., High-potential redox shuttle for use in lithium-ion batteries, J. Electrochem. Soc., 2009, vol. 156, no. 4, p. A309.
  19. Feng, X.M., Ai, X.P., and Yang, H.X., Possible use of methylbenzenes as electrolyte additives for improving the overcharge tolerances of Li-ion batteries, J. Appl. Electrochem., 2004, vol. 34, no. 12, p. 1199.
  20. Tobishima, S., Ogino, Y., and Watanabe, Y., Influence of electrolyte additives on safety and cycle life of rechargeable lithium cells, J. Appl. Electrochem., 2003, vol. 33, no. 2, p. 143.
  21. Huanyu, M. and Ulrich, V.S., Cabada Patent CA2163187C, 1996.
  22. Heinze, J., Frontana-Uribe, B.A., and Ludwigs, S., Electrochemistry of conducting polymers—persistent models and new concepts, Chem. Rev., 2010, vol. 110, no. 8, p. 4724.
  23. Beletskii, E.V., Volosatova, Yu.A., Eliseeva, S.N., and Levin, O.V., The effect of electrode potential on the conductivity of polymer complexes of nickel with salen ligands, Russ. J. Electrochem., 2019, vol. 55, p. 339.
  24. Beletskii, E.V., Fedorova, A.A., Lukyanov, D.A., Yankin, A.N., Kalnin, A.Y., Ershov, V.A., Danilov, S.E., Spiridonova, D.V., Alekseeva, E.V., and Levin, O.V., Switchable resistance conducting-polymer layer for Li-ion battery overcharge protection, J. Power Sources, 2021, vol. 490, p. 229548.
  25. Alekseeva, E.V., Chepurnaya, I.A., Malev, V.V., Timonov, A.M., and Levin, O.V., Polymeric nickel complexes with salen-type ligands for modification of supercapacitor electrodes: impedance studies of charge transfer and storage properties, Electrochim. Acta., 2017, vol. 225, p. 378.
  26. Lepage, D., Savignac, L., Saulnier, M., Gervais, S., and Schougaard, S.B., Modification of aluminum current collectors with a conductive polymer for application in lithium batteries, Electrochem. Commun., 2019, vol. 102, p. 1.
  27. O’Meara, C., Karushev, M.P., Polozhentceva, I.A., Dharmasena, S., Cho, H., Yurkovich, B.J., Kogan, S., and Kim, J.-H., Nickel–salen-type polymer as conducting agent and binder for carbon-free cathodes in lithium-ion batteries, ACS Appl. Mater. Interfaces, 2019. vol. 11, no. 1, p. 525.