Статья
2021

Preparation and Ion Transport Properties of a New TiO2 Dispersed Sodium Ion Conducting Nanocomposite Polymer Electrolytes


 Archana Chandra Archana Chandra , Angesh Chandra Angesh Chandra , R. S. Dhundhel R. S. Dhundhel , Alok Jain Alok Jain , Alok Bhatt Alok Bhatt
Российский электрохимический журнал
https://doi.org/10.1134/S1023193521040042
Abstract / Full Text

Preparation and ion transport property of new Na+ ion conducting nanocomposite polymeric electrolytes (NCPEs): (1 – x)[80PEO:20NaI] + xTiO2, where 0 ≤ x ≤ 20 wt %, are reported. The present NCPEs have been synthesized by a new hot-press technique. The highest room temperature conductivity (σ ~ 4.5 × 10–5 S cm–1) has been found at the composition: [95(80PEO:20NaI) +5TiO2] and this has been referred to as optimum conducting composition (OCC). Four orders of conductivity enhancement have been achieved by the dispersion of nano filler TiO2 from that of the pure PEO (σ ~ 4.2 × 10–9 S cm–1). The ion transport properties of newly synthesized NCPEs has been discussed on the basis of experimental measurements on some basic ionic parameters viz. conductivity (σ), ionic mobility (μ), mobile ion concentration (n) and ionic transference number (tion) measurements. Material characterizations have been done with the help of scanning electron micrograph (SEM) and differential scanning calorimetry (DSC) studies. The conductivity as a function of temperature has also been studied to compute the activation energy (Ea) by least square linear fitting of “logσ–1/T” Arrhenius plot.

Author information
  • Shri Shankaracharya Institute of Professional Management and Technology, 492015, Raipur, C.G., India

    Archana Chandra, Angesh Chandra, R. S. Dhundhel & Alok Jain

  • Bharti College, 491001, Durg, C.G., India

    Alok Bhatt

References
  1. Gray, F.M., Polymer Electrolytes: Fundamentals and Technological Applications, New York: VCH Publ., 1991.
  2. Bhide, A. and Hariharan, K., A new polymer electrolyte system (PEO)n:NaPO3, J. Power Source, 2006, vol. 159, p. 1450.
  3. Wang, J., Hucheng, Z., Honghe, Z., and Xiaopeng, X., Correlation of PEO conformations and solvation in PEO–NaSCN polymer electrolytes, Chem. Phys., 2006, vol. 325, p. 538.
  4. Chandra, A., Ion conduction behavior of hot-pressed nano-composite polymer electrolytes: (1 – x)[70PEO: 30NaBr] + xSiO2, Polym. Bull., 2019, vol. 76, p. 785.
  5. Fenton, D.E., Parker, J.M., and Wrigth, P.V., Complexes of alkali metal ions with poly(ethylene oxide), Polymer, 1973, vol. 14, p. 589.
  6. Armand, M.P., Chabagno, J.M., and Diadat, M., Fast Ion Transport in Solids, Vashistha, P., Mundy, M., and Sheny, G.K., Eds., North Holland, 1979, p. 131.
  7. Croce, F., Appetecchi, G.B., Persi, L., and Scrosati, B., Nanocomposite polymer electrolytes for lithium batteries, Nature, 1988, vol. 394, p. 456.
  8. Lakshmi, N. and Chandra, S., Proton conducting composites of heteropolyacid hydrates (phosphomolybdic and phosphotungstic acids) dispersed with insulating Al2O3, Phys. Status Solidi A, 2001, vol. 186, p. 383.
  9. Chandra, A., Chandra, A., and Thakur, K., Synthesis and characterization of hot pressed ion conducting solid polymer electrolytes: (1 – x)PEO:xNaClO4, Eur. Phys. J. Appl. Phys., 2015, vol. 69, p. 20901.
  10. Natarajan, A., Stephan, A.M., Chan, C.H., Kalarikkal, N., and Thomas, S., Electrochemical studies on composite gel polymer electrolytes for lithium sulfur-batteries, J. Appl. Poly. Sci., 2017, vol. 134, p. 44594.
  11. Chandra, A., Chandra, A., and Dhundhel, R.S., Electrolytes for sodium ion batteries: a short review, Indian J. Pure Appl. Phys., 2020, vol. 58, p. 113.
  12. Appetecchi, G.B., Croce, F., Hassoun, J., Scrosati, B., Salomon, M., and Cassel, F., Hot-pressed, dry, composite, PEO-based electrolyte membranes I. Ionic conductivity characterization, J. Power Sources, 2003, vol. 114, p. 105.
  13. Chandra, S., Tolpadi, S.K., and Hashmi, S.A., Transient ionic current measurement of ionic mobilities in a few proton conductors, Solid State Ionics, 1988, vols. 28–30, p. 651.
  14. Chandra, A., Chandra, A., and Thakur, K., Preparation and characterization of hot-pressed Na+ ion conducting nano-composite polymer electrolytes, Indian J. Pure Appl. Phys., 2013, vol. 51, p. 44.
  15. Hassoun, J. and Scrosati, B., Moving to a solid-state configuration: a valid approach to taking lithium-sulfur batteries viable for practical applications, Adv. Mater., 2010, vol. 22, p. 5198.
  16. Stephan, A.M., Review on gel polymer electrolytes for lithium batteries, Eur. Polym. J., 2006, vol. 42, p. 21.
  17. Chandra, A., Ion conducting nano-composite polymer electrolytes: synthesis and ion transport characterization, Polym. Bull., 2017, vol. 74, p. 4815.
  18. Agrawal, R.C. and Pandey, G.P., Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview, J. Phys. D Appl. Phys., 2008, vol. 41, p. 223001.
  19. Chu, P.P., Reddy, J.M., and Kao, N.M., Novel composite polymer electrolyte comprising mesoporous structured SiO2 and PEO/Li, Solid State Ionics, 2003, vol. 156, p. 141.
  20. Ahmad, S., Deepa, M., and Agnihotry, S.A., Effect of salts on the silica-based composite polymer electrolytes, Sol. Energy Mater. Sol. Cells, 2008, vol. 92, p. 184.
  21. Chandra, A., Hot-pressed PEO-PVP blended solid polymer electrolytes: ion transport and battery application, Polym. Bull., 2016, vol. 73, p. 2707.