On the contamination of membrane–electrode assembles of water electrolyzers with solid polymer electrolyte by the elements of titanium alloys

S. A. Grigoriev S. A. Grigoriev , D. G. Bessarabov D. G. Bessarabov , A. S. Glukhov A. S. Glukhov
Российский электрохимический журнал
Abstract / Full Text

The aspects of contamination of membrane–electrode assemblies of water electrolyzers with solid polymer electrolyte by the elements of titanium alloys (Ti and Fe) are considered. These alloys are used as the material for current collectors/gas-diffusion electrodes, bipolar plates, and other elements of electrolysis system. It is shown that titanium is one of the main impurities that contaminate the membrane and electrocatalytic layers of membrane–electrode assembly in the case that deionized water is used as the reagent. The membrane contamination can lead to the degradation of electrolyzer characteristics and its failure.

Author information
  • National Research University “Moscow Power Engineering Institute,”, Krasnokazarmennaya st. 14, Moscow, 111250, Russia

    S. A. Grigoriev & A. S. Glukhov

  • HySA Infrastructure Center of Competence, North-West University, Potchefstroom, 2520, South Africa

    D. G. Bessarabov

  • National Research Center “Kurchatov Institute”, Akad. Kurchatov sq. 1, Moscow, 123182, Russia

    A. S. Glukhov

  1. Millet, P., Ranjbari, A., de Guglielmo, F., Grigoriev, S.A., and Aupretre, F., Int. J. Hydrogen Energy, 2012, vol. 37, p. 17478.
  2. Rakousky, C., Reimer, U., Wippermann, K., Carmo, M., Lueke, W., and Stolten, D., J. Power Sources, 2016, vol. 326, p. 120.
  3. Wei, G., Wang, Y., Huang, C., Gao, Q., Wang, Z., and Xu, L., Int. J. Hydrogen Energy, 2010, vol. 35, p. 3951.
  4. Sun, S., Shao, Z., Yu, H., Li, G., and Yi, B., J. Power Sources, 2014, vol. 267, p. 515.
  5. Grigoriev, S.A., Dzhus, K.A., Bessarabov, D.G., and Millet, P., Int. J. Hydrogen Energy, 2014, vol. 39, p. 20440.
  6. Grigor'ev, S.A., Dzhus’, K.A., Bessarabov, D.G., Markelov, V.V., and Fateev, V.N., Elektrokhim. Energetika, 2014, vol. 14, p. 187.
  7. Gago, A.S., Ansar, S.A., Saruhan, B., Schulz, U., Lettenmeier, P., Canas, N.A., Gazdzicki, P., Morawietz, T., Hiesgen, R., Arnold, J., and Friedrich, K.A., J. Power Sources, 2016, vol. 307, p. 815.
  8. Langemann, M., Fritz, D.L., Muller, M., and Stolten, D., Int. J. Hydrogen Energy, 2015, vol. 40, p. 11385.
  9. Grigoriev, S.A., Bessarabov, D.G., and Fateev, V.N., Russ. J. Electrochem., 2017, vol. 53, no. 3, p. 318.
  10. Grigoriev, S.A. and Kalinnikov, A.A., Int. J. Hydrogen Energy, 2017, vol. 42, p. 1590.
  11. Fokin, M.N., Ruskol, Yu.S., and Mosolov, A.V., Titan i ego splavy v khimicheskoi promyshlennosti. Spravochnoe posobie (Titanium and Its Alloys in Chemical Industry. A Handbook), Leningrad: Khimiya, 1978.
  12. Ohtsuka, T., Masuda, M., and Sato, N., J. Electrochem. Soc., 1987, vol. 134, p. 2406.
  13. Dyer, C.K. and Leach, J.S.L., J. Electrochem. Soc., 1978, vol. 125, p. 23.
  14. Zeng, Y., Noel, J.J., Norton, P.R., and Shoesmith, D.W., J. Electroanal. Chem., 2010, vol. 649, p. 277.
  15. Safronova, E.Yu. and Yaroslavtsev, A.B., Membr. Membr. Tekhnol., 2016, vol. 6, p. 3.
  16. Ehteshami, S., Mohsen Mousavi, Taheri Amirhooshang, and Chan, S.H., J. Industr. Eng. Chem., 2016, vol. 34, p. 1.
  17. Baranov, I.E., Grigoriev, S.A., Ylitalo, D., Fateev, V.N., and Nikolaev, I.I., Int. J. Hydrogen Energy, 2006, vol. 31, p. 203.
  18. Baranov, I.E., Grigoriev, S.A., Nikolaev, I.I., and Fateev, V.N., Russ. J. Electrochem., 2006, vol. 42, p. 1325.