Examples



mdbootstrap.com



 
Статья
2020

Effect of Substituents on the Energy Barrier of Internal Rotation in Aminonitroethylenes


B. E. KrisyukB. E. Krisyuk, T. M. SypkoT. M. Sypko
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427220060178
Abstract / Full Text

Promising energetic materials 1,1-diamino-2,2-dinitroethylene (DADNE) and its derivatives in which one or both hydrogen atoms of the amino group are substituted by the NH2 or OH group were studied by quantum-chemical methods using PBE0 hybrid functional with the cc-pVDZ basis set and the coupled cluster method on the CCSD/aug-cc-pVDZ level. The thermal stability of such substances depends on the energy barrier of internal rotation Er around the C=C bond. The above-indicated substituents decrease Er . The value of Er is mainly determined by the structure of intramolecular hydrogen bonds. Introduction of the amino group leads to a more pronounced decrease in Er than introduction of the hydroxy group does.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432, Moscow oblast, RussiaB. E. Krisyuk & T. M. Sypko
  • Moscow State University, 119991, Moscow, RussiaT. M. Sypko
References
  1. Latypov, N.V., Bergman, J., Langlet, A., Wellmar, U., and Bemm, U., Tetrahedron, 1998, vol. 54, no. 38, pp. 11525–11536. https://doi.org/10.1016/S0040-4020(98)00673-5
  2. Bellamy, A.J., Structure and Bonding, Mingos, D.M.P., Ed., Berlin: Springer, 2007, vol. 125, pp. 1–33. https://doi.org/10.1007/430_2006_054
  3. Sikder, A.K. and Sikder, N., J. Hazard. Mater., 2004, vol. 112, nos. 1–2, pp. 1–15. https://doi.org/10.1016/j.jhazmat.2004.04.003
  4. Trzciński, W.A., Cudziło, S., Chyłek, Z., and Szymańczyk, L., J. Hazard. Mater., 2008, vol. 157, nos. 2–3, pp. 605–612. https://doi.org/10.1016/j.jhazmat.2008.01.026
  5. Nair, U.R., Asthana, S.N., Subhananda Rao, A., and Gandhe, B.R., Defence Sci. J., 2010, vol. 60, no. 2, pp. 137–151. https://doi.org/10.14429/dsj.60.327
  6. Liu, Y., Li, F., and Sun, H., Theor. Chem. Acc., 2014, vol. 133, no. 10, ID 1557. https://doi.org/10.1007/s00214-014-1567-5
  7. Jiang, H., Jiao, Q., and Zhang, C., J. Phys. Chem. C, 2018, vol. 122, no. 27, pp. 15125–15132. https://doi.org/10.1021/acs.jpcc.8b03691
  8. Burnham, A.K., Weese, R.K., Wang, R., Kwok, Q.S.M., and Jones, D.E.G., Thermal properties of FOX-7, 35th Int. Annual Conf. of ICT, Karlsruhe (Germany), 2005, publ. 70.
  9. Gindulyte, A., Massa, L., Huang, L., and Karle, J., J. Phys. Chem. A, 1999, vol. 103, no. 50, pp. 11045–11051. https://doi.org/10.1021/jp991794a
  10. Khrapkovskii, G.M., Nikolaeva, E.V., Chachkov, D.V., and Shamov, A.G., Russ. J. Gen. Chem., 2004, vol. 74, no. 6, pp. 908–920. https://doi.org/10.1023/B:RUGC.0000042427.28020.77
  11. Kiselev, V.G. and Gritsan, N.P., J. Phys. Chem. A, 2014, vol. 118, no. 36, pp. 8002–8008. https://doi.org/10.1021/jp507102x
  12. Krisyuk, B.E. and Veretin, V.S., Butlerovsk. Soobshch., 2017, vol. 49, no. 2, pp. 31–35.
  13. Krisyuk, B.E., Russ. J. Phys. Chem. B, 2020, vol. 14, no. 1, pp. 1–4. https://doi.org/10.1134/S1990793120010054
  14. Bellamy, A.J., Latypov, N.V., and Goede, P., J. Chem. Res. (S), 2002, no. 7, pp. 257–257. https://doi.org/10.3184/030823402103172103
  15. Axthammer, Q.J., Krumm, B., and Klapötke, T.M., J. Phys. Chem. A, 2017, vol. 121, no. 18, pp. 3567–3579. https://doi.org/10.1021/acs.jpca.7b01742
  16. Katritzky, A.R., Sommen, G.L., Gromova, A.V., Witek, R.M., Steel, P.J., and Damavarapu, R., Chem. Heterocyclic Compd., 2005, vol. 41, no. 1, pp. 127–134.
  17. Frumkin, A.E., Yudin, N.V., Suponitsky, K.Yu., and Sheremetev, A.B., Mendeleev Commun., 2018, vol. 28, no. 2, pp. 135–137. https://doi.org/10.1016/j.mencom.2018.03.007
  18. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision C.01, Wallingford, CT: Gaussian, 2009.
  19. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., and Montgomery, J.A., J. Comput. Chem., 1993, vol. 14, no. 11, pp. 1347–1363. https://doi.org/10.1002/jcc.540141112
  20. Adamo, C. and Barone, V., J. Chem. Phys., 1999, vol. 110, no. 13, pp. 6158–6170. https://doi.org/10.1063/1.478522