Examples



mdbootstrap.com



 
Статья
2021

Structure of the Nearest Environment of Ions in Aqueous Solutions of Praseodymium Chloride in a Wide Range of Concentrations


P. R. SmirnovP. R. Smirnov, O. V. GrechinO. V. Grechin
Российский журнал физической химии А
https://doi.org/10.1134/S003602442110023X
Abstract / Full Text

The radial distribution functions of aqueous solutions of praseodymium chloride in a wide range of concentrations under standard conditions were calculated from the experimental data obtained earlier by XRD analysis. The results were analyzed using a model approach. The quantitative characteristics of the nearest environment of Pr3+ and Cl ions were determined: coordination numbers, interparticle distances, and types of ion pairs. At higher concentration, the average number of water molecules decreases from 9 to 6.2 in the first coordination sphere of the cation and from 14.4 to 4.2 in the second. It was concluded that the structure of a dilute solution is determined by an ion pair of the noncontact type, which transforms into an ion triplet at increased concentrations.

Author information
  • Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045, Ivanovo, RussiaP. R. Smirnov
  • Ivanovo State University of Chemistry and Technology, 153000, Ivanovo, RussiaO. V. Grechin
References
  1. H. Habenschuss and F. H. Spedding, J. Chem. Phys. 70, 3758 (1979). https://doi.org/10.1063/1.437928
  2. T. Yamaguchi, S. Tanaka, H. Wakita, et al., Z. Naturforsch. A 46, 84 (1991). https://doi.org/10.1515/zna-1991-1-213
  3. J. A. Solera, J. Garcia, and M. G. Proietti, Phys. Rev. B 51, 2678 (1995). https://doi.org/10.1103/PhysRevB.51.2678
  4. S.-I. Ishiguro, Y. Umebayashi, K. Kato, et al., J. Chem. Soc. Faraday Trans. 94, 3607 (1998). https://doi.org/10.1039/A806967K
  5. I. Persson, P. D’Angelo, S. de Panfilis, et al., Chem.–Eur. J. 14, 3056 (2008). https://doi.org/10.1002/chem.200701281
  6. W. W. Rudolph and G. Irmer, Dalton Trans. 46, 4235 (2017). https://doi.org/10.1039/C7DT00008A
  7. M. Duvail, R. Spezia, and P. Vitorge, Chem. Phys. Chem. 9, 693 (2008). https://doi.org/10.1002/cphc.200700803
  8. M. Duvail, P. Vitorge, and R. Spezia, J. Chem. Phys. 130, 104501 (2009). https://doi.org/10.1063/1.3081143
  9. P. P. Passler and B. M. Rode, Chem. Phys. Lett. 642, 12 (2015). https://doi.org/10.1016/j.cplett.2015.10.065
  10. T. Yaita, H. Narita, Sh. Suzuki, et al., J. Radioanal. Nucl. Chem. 239, 371 (1999).
  11. P. G. Allen, J. J. Bucher, D. K. Shuh, et al., Inorg. Chem. 39, 595 (2000).
  12. O. V. Grechin, P. R. Smirnov, and V. N. Trostin, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 54 (6), 42 (2011).
  13. G. Johansson and M. Sandström, Chem. Scr. 4, 195 (1973).
  14. P. R. Smirnov and O. V. Grechin, Russ. J. Inorg. Chem. 62, 457 (2017). https://doi.org/10.1134/S0036023617040192
  15. P. R. Smirnov, O. V. Grechin, and I. L. Kritskii, Russ. J. Phys. Chem. A 89, 630 (2015). https://doi.org/10.1134/S0036024415040238