Статья
2020

Lithium–Oxygen Power Source: the Influence of Positive Electrode Thickness on the Overall Discharge Characteristics


Yu. G. Chirkov Yu. G. Chirkov , V. I. Rostokin V. I. Rostokin , V. N. Andreev V. N. Andreev , V. A. Bogdanovskaya V. A. Bogdanovskaya , O. V. Korchagin O. V. Korchagin
Российский электрохимический журнал
https://doi.org/10.1134/S102319352006004X
Abstract / Full Text

Characteristic feature of the discharge process of lithium–oxygen battery cathode with non-aqueous electrolyte is the blockade of pores in the positive electrode by lithium peroxide (Li2O2), an insoluble in the electrolyte and non-conductive substance. Lithium peroxide blocks cathode pores and thus hinders the oxygen entering therein. This complicates, in its turn, further behavior of the reaction. The goal of this work is to understand the following problems: (1) why is the acceptable thickness of the positive-electrode active layer extremely low, and (2) what is the reason of the lowering of specific capacity with the increasing of the active layer thickness. The main properties of the lithium—oxygen battery discharge—the current density, discharge time, specific capacity and the constant of oxygen consumption k*—were calculated using a digital simulation method. It was shown that the necessity of usage of low discharge current density is caused by the small thickness of the cathode region adjacent to the boundary with gaseous phase, in which the formation of Li2O2 occurs. An increase in the cathode thickness induces a decrease in the current density, which, in its turn, leads to increase in parameter k and decrease in the discharge capacity.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Moscow, Russia

    Yu. G. Chirkov, V. N. Andreev, V. A. Bogdanovskaya & O. V. Korchagin

  • National Research Nuclear University (MIFI), 115409, Moscow, Russia

    V. I. Rostokin

References
  1. Tarasevich, M.R., Andreev, V.N., Korchagin, O.V., and Tripachev, O.V. Lithium–oxygen (air) power sources (state-of-the-art and perspectives), Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no 1, p. 3.
  2. Mohazabrad, F., Wang, F., and Li, X., Experimental Studies of Salt Concentration in Electrolyte on the Performance of Li–O2 Batteries at Various Current Densities, J. Electrochem. Soc., 2016, vol.163, no.13, p. A2623.
  3. Nomura, A., Ito, K., Kubo, Y., CNT Sheet Air Electrode for the Development of Ultra-High Cell Capacity in Lithium–Air Batteries, Scientific Reports, 2017, vol. 7, p. 45596.
  4. The Lithium–Air Battery: Fundamentals, Imanishi, N., Luntz, A.C., and Bruce, P.G., Eds., New York: Springer, 2014.
  5. Abraham, K.M. and Jiang, Z., A Polymer Electrolyte-Based Rechargeable lithium/Oxygen Battery, J. Electrochem. Soc., 1996, vol. 143, p. 1.
  6. Beattie, S.D., Manolescu, D.M., and Blair, S.L., High-Capacity Lithium–Air Cathodes, J. Electrochem. Soc., 2009, vol. 156, p. A44.
  7. Xiao, J., Wang, D., Xu, W., Wang, D., Williford, R.E., Liu, J., and Zhang, J.-G., Optimization of Air Electrode for Li/Air Batteries, J. Electrochem. Soc., 2010, vol. 157, p. A487.
  8. Zhang, G.Q., Zheng, J.P., Liang, R., Zhang, C., Wang, B., Hendrickson, M., and Plichta, E.J., Lithium–Air Batteries Using SWNT/CNF Buck papers as Air Electrodes, J. Electrochem. Soc., 2010, vol. 157, p. A953.
  9. Landa-Medrano, I., Pinedo, R., Ruiz de Larramendi, I., Ortiz-Vitoriano, N., and Rojo, T., Monitoring the Location of Cathode-Reactions in Li–O2 Batteries, J. Electrochem. Soc., 2015, vol. 162, p. A3126.
  10. Tran, C., Yang, X.-Q., and Qu, D., Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity, J. Power Sources, 2010, vol. 195, no. 7, p. 2057.
  11. Yang, X.-h., He, P., and Xia, Y.-Y., Preparation of mesocellular carbon foam and its application for Lithium/Air Battery, Electrochem. Commun., 2009, vol. 11, no .6, p. 1127.
  12. Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., and Hendrickson, M.A., Elucidating the mechanism of oxygen reduction for lithium–air battery applications, J. Phys. Chem. C, 2009, vol. 113, no. 46, p. 20127.
  13. Laoire, C.O., Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium–air, J. Phys. Chem. C, 2010, vol. 114, no. 19, p. 9178.
  14. Cha se, M.W., NIST-JANAF, Jr., Thermochemical Tables, J. Phys. Chem. Ref. Data, Monogr. 1998, vol. 9, p. 1510.
  15. Bogdanovskaya, V.A., Korchagin, O.V., Tarasevich, M.R., Andreev, V.N., Nizhnikovskii, E.A., Radina, M.V., Tripachev O.V., and Emets V.V. Mesoporous Nanostructured Materials for the Positive Electrode of a Lithium-Oxygen Battery. Prot. Met. Phys. Chem. Surf., 2018, vol. 54, p. 373.
  16. Hase, Y., Komori, Y., Kusumoto, T., Harada, T., Seki, J., Shiga, T., Kamiya, K., and Nakanishi, S., Negative differential resistance as a critical indicator for the discharge capacity of lithium-oxygen batteries, Nat. Comm., 2019, vol. 10, p. 596.
  17. Tan, P., Ni, M., Shao, Z., Chen, B., and Kong, W., Numerical investigation of a non-aqueous lithium-oxygen battery based on lithium superoxide as the discharge product, Appl. Energy, 2017, vol. 203, p. 254.
  18. Sandhu, S.S., Diffusion-limited model for a lithium/air battery with an organic electrolyte, J. Power Sources, 2007, vol. 164, no. 1, p. 365.
  19. Read, J., Mutolo, K., Ervin, M., Behl, W., Wolfenstine, J., Driedger, A., and Foster, D., Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery, J. Electrochem.l Soc., 2003, vol. 150, p. A1351.
  20. Dabrowski, T., Struck, A., Fenske, D., Maaß, P., and Ciacchi, L.C., Optimizatio of Catalytically Active Sites Positioning in Porous Cathodes of Lithium/Air Batteries Filled with Different Electrolytes, J. Electrochem. Soc., 2015, vol. 162, no. 14, p. A2796.
  21. Chirkov, Yu.G., Andreev, V.N., Rostokin, V.I., and Bogdanovskaya, V.A., Discharge of Lithium–Oxygen Power Source:Monoporous Cathode Theory and Role of Constant of Oxygen Consumption Process, Alternative Energy Ecology (ISJAEE), 2018, no. 4–6, p. 95.
  22. Bogdanovskaya, V.A., Andreev, V.N., Chirkov, Yu.G., Rostokin, V.I., Emets, V.V., Korchagin, O.V., Tripachev, O.V. Effect of Positive Electrode Structure on Process of Discharge of Lithium–Oxygen (Air) Power Source. Theory of Monoporous Cathode, Prot. Met. Phys. Chem. Surf., 2018, vol. 54, p. 549.
  23. Diakonov, V.P., Maple 10/11/12/13/14in mathematical calculations, Moscow: DMK-Press, 2011.
  24. Davis, J.H., Differential Equations with Maple: An Interactive Approach. ISBN.
  25. Edwards, Charles Henry, Penny, David E., Differential Equations and Boundary Value Problems: Computing and Modeling, 3rd Ed., Williams Publ. House, 2008.
  26. Xiao, J., Wang, D., Xu, W., Wang, D., Williford, R.E., Liu, J., and Zhang, J.-G., Optimization of Air Electrode for Li/Air Batteries, J. Electrochem. Soc., 2010, vol. 157, p. A487.
  27. Landa-Medrano, I., Pinedo, R., Ruiz de Larramendi, I., Ortiz-Vitoriano, N., and Rojo, T., Monitoring the Location of Cathode-Reactions in Li–O2 Batteries, J. Electrochem. Soc., 2015, vol. 162, p. A3126.
  28. Bao, J., Hu, W., Bhattacharya, P., Stewart, M., Zhang, J.-G., and Pan, W., Discharge performance of Li–O2 batteries using a multiscale modeling approach, J. Phys. Chem. C., 2015, vol. 119, no. 27, p. 14851.
  29. Pan, W., Yang, X., Bao, J., and Wang, M., Optimizing discharge capacity of Li–O2 Batteries dy design of air-electrode porous structure: Multifidelity modeling and optimization, J. Electrochem. Soc., 2017, vol. 164, no. 11, p. E3499.
  30. Gaya, C., Yin, Y., Torayev, A., and Mammeri, Y., Franco Investigation of bi-porous electrodes for lithium oxygen batteries, Electrochim. Acta, 2018, vol. 279, p. 118.