Synthesis of ZnO/g-C3N4 Nanocomposite and Its Electrochemical Application in Hydrogen Peroxide Detection

 Hui Liu Hui Liu , Yu Zhang Yu Zhang , Yong Ping Dong Yong Ping Dong , Xiang Feng Chu Xiang Feng Chu
Российский электрохимический журнал
Abstract / Full Text

In order to improve the electrochemical behavior of graphitic carbon nitride (g-C3N4), ZnO nanoparticles were coupled with g-C3N4 nanosheets to form functional nanocomposite through hydrothermal method. The morphologies of nanocomposite were characterized by TEM and XRD. The results revealed that the addition of g-C3N4 can efficiently inhibit the growth of ZnO along the c-axis to obtain smaller size ZnO nanoparticles, which could bring the enhanced electrochemical response. Hydrogen peroxide was selected as a model to investigate the electrochemical behavior of nanocomposite in neutral condition. Compared with pure ZnO and g-C3N4 modified electrodes, the oxidation of H2O2 could be greatly enhanced at the ZnO/g-C3N4 modified electrode, revealing that the coupling of g-C3N4 with metal oxide could significantly improve its conductivity and electrochemical response. As a result, H2O2 could be sensitively detected at the modified electrode in the range of 5 μM to 0.2 mM. The proposed method could be successfully used in the detection of H2O2 in tap water samples with satisfactory results.

Author information
  • Analytical Instrumentation Center, School of Chemistry and Chemical Engineering, Hexian Development Institute of Chemical Industry, Anhui University of Technology, 243002, Maanshan, China

    Hui Liu, Yu Zhang, Yong Ping Dong & Xiang Feng Chu

  1. Sun, M.H., Huang, S.Z., Chen, L.H., Li, Y., Yang, X.Y., Yuan, Z.Y., and Su, B.L., Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption,separation, and sensing to biomedicine, Chem. Soc. Rev., 2016, vol. 45, p. 3479.
  2. Liu, J.W., Xu, Y.M.W.L., Duan, L.Y., Tang, H., Yu, R.Q., and Jiang, J.H., Melanin-line nanoquencher on graphitic carbon nitride nanosheets for tyrosinase activity and inhibitor assay, Anal. Chem., 2016, vol. 88, p. 8355.
  3. Thomas, A., Fischer, A., Goettmann, F., Antonietti, M., Muller, J.O., Schlogl, R., and Carlsson, J.M., Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts, J. Mater. Chem., 2008, vol. 18, p. 4893.
  4. Zhang, Y., Mori, T., Niu, L., and Ye, J., Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion, Energy Environ. Sci., 2011, vol. 4, p. 4517.
  5. Gu, H., Zhou, T.S., and Shi, G., Synthesis of graphene supported graphene-like C3N4 metal-free layered nanosheets for enhanced electrochemical performance and their biosensing for biomolecules, Talanta, 2015, vol. 132, pp. 871–876.
  6. Faraji, M., Mohaghegh, N., and Abedini, A., Ternary composite of TiO2 nanotube/Ti plates modified by g‑C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity, J. Photochem. Photobio. B, 2018, vol. 178, p. 124.
  7. Liu, L., Wang, J.X., Wang, C.Y., and Wang, G. X., Facile synthesis of graphitic carbon nitride/nanostructured α-Fe2O3 composites and their excellent electrochemical performance for supercapacitor and enzyme-free glucose detection applications, Appl. Surf. Sci., 2016, vol. 390, p. 303.
  8. Zhai, J.L., Wang, T., Wang, C., and Liu, D.C., UV-light-assisted ethanol sensing characteristics of g‑C3N4/ZnO composites at room temperature, Appl. Surf. Sci., 2018, vol. 441, p. 317.
  9. Zheng, X.L., Hua, X.X., Qiao, X.Y., Xia, F.Q., Tian, D., and Zhou, C.L., Simple and signal-off electrochemiluminescence immunosensor for alpha fetoprotein based on gold nanoparticles-modified graphite-like carbon nitride nanosheet nanohybrids, RSC Adv., 2016, vol. 6, p. 21308.
  10. Lin, X., Zhu, S., Wang, Q., Xia, Q., Ran, P., and Fu, Y., Chiral recognition of penicillamine enantiomers using hemoglobin and gold nanoparticles functionalized graphite-like carbon nitride nanosheets via electrochemiluminescence, Colloid. Surf. B, 2016, vol. 148, p. 371.
  11. Chu, S., Wang, Y., Guo, Y., Feng, J.Y., Wang, C.C., Luo, W.J., Fan, X.X., and Zou, Z.G., Band structure engineering of carbon nitride: in search of a polymer photocatalyst with high photooxidation property, ACS Catal., 2013, vol. 3, p. 912.
  12. Wang, Y., Yao, J., Li, H.R., Su, D.S., and Antonietti, M., Highly selective hydrogenation of phenol and derivatives over a Pd@carbon nitride catalyst in aqueous media, J. Am. Chem. Soc., 2011, vol. 133, p. 2362.
  13. Xu, F., Jiang, X., Hu, J., Zhang, J., and Yan, H., Nano g-C3N4/TiO2 composite: a highly efficient photocatalyst for selenium(VI) photochemical vapor generation for its ultrasensitive AFS determination, Microchem. J., 2017, vol. 135, p. 158.
  14. Zhang, Y., Yan, M., Ge, S.G., Ma, C., Yu, J.H., and Song, X.R., An enhanced photoelectrochemical platform: graphite-like carbon nitride nanosheet-functionalized ZnO nanotubes, J. Mater. Chem. B, 2016, vol. 4, p. 4980.
  15. Zhang, R. and Chen, W., Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors, Biosens. Bioelectron., 2017, vol. 89, p. 249.
  16. Dai, H., Lu, W., Zou, X., Zhu, Q., Pan, C., Niu, X., Liu, J., Chen, H., and Chen, X., A novel biosensor based on boronic acid functionalized metal-organic frameworks for the determination of hydrogen peroxide released from living cells, Biosens. Bioelectron., 2017, vol. 95, p. 131.
  17. Liu, J., Bo, X., Zhao, Z., and Guo, L., Highly exposed Pt nanoparticles supported on porous graphene for electrochemical detection of hydrogen peroxide in living cells, Biosens. Bioelectron., 2015, vol. 74, p. 71.
  18. Dong, F., Zhao, Z.W., Xiong, T., Ni, Z.L., Zhang, W.D., Sun, Y.J., and Ho, W.K., In situ construction of g‑C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis, ACS Appl. Mater. Interfaces, 2013, vol. 5, p. 11392.
  19. Niu, P., Zhang, L.L., Liu, G., and Cheng, H.M., Graphene-like carbon nitride nanosheets for improved photocatalytic activities, Adv. Funct. Mater., 2012, vol. 22, p. 4763.
  20. Al-Nafiey, A., Sieber, B., Gelloz, B., Addad, A., Moreau, M., Barjon, J., Girleanu, M., Ersen, O., and Boukherroub, R., Enhanced ultraviolet luminescence of ZnO nanorods treated by high-pressure water vapor annealing (HWA), J. Phys. Chem. C, 2016, vol. 120, p. 4571.
  21. De la Rosa, E., Sepulveda-Guzman, S., Reeja-Jayan, B., Torres, A., Salas, P., Elizondo, N., and Jose Yacaman, M., Controlling the growth and luminescence properties of well-faceted ZnO nanorods, J. Phys. Chem. C, 2007, vol. 111, p. 8489.
  22. Liao, G., Chen, S., Quan, X., Yu, H., and Zhao, H., Graphene oxide modified g-C3N4 hybrid with enhanced photocatalytic capability under visible light irradiation, J. Mater. Chem., 2012, vol. 22, p. 2721.
  23. Liu, L., Luo, X., Li, Y.Z., Xu, F., Gao, Z.B., Zhang, X.N., Song, Y.H., Xu, H., and Li, H.M., Facile synthesis of few-layer g-C3N4/ZnO composite photocatalyst for enhancing visible light photocatalytic performance of pollutants removal, Colloid. Surf. A, 2018, vol. 537, p. 516.
  24. Li, L., Sun, S.Q., Wang, Y.X., and Wang, C.Y., Facile synthesis of ZnO/g-C3N4 composites with honeycomb-like structure by H2 bubble templates and their enhanced visible light photocatalytic performance, J. Photoch. Photobio. A, 2018, vol. 355, p. 16.
  25. Zhang, Y., Yan, M., Ge, S.G., Ma, C., Yu, J.H., and Song, X.R., Anenhanced photoelectrochemical platform: graphite-like carbon nitride nanosheet-functionalized ZnO nanotubes, J. Mater. Chem. B, 2016, vol. 4, p. 4980.
  26. Jiang, Q.M., Zhang, M.R., Luo, L.Q., and Pan, G.B., Electrosynthesis of bismuth nanodendrites/gallium nitride electrode for non-enzymatic hydrogen peroxide detection, Talanta, 2017, vol. 171, p. 250.
  27. Wang, X.J., Guo, X.L., Chen, J., Ge, C., Zhang, H.Y., Liu, Y.Y., Zhao, L., Zhang, Y., Wang, Z.M., and Sun, L.T., Au nanoparticles decorated graphene/nickel foam nanocomposite for sensitive detection of hydrogen peroxide, J. Mater. Sci. Technol., 2017, vol. 33, p. 246.
  28. Zhang, M.R., Chen, X.Q., and Pan, G.B., Electrosynthesis of gold nanoparticles/porous GaN electrode for non-enzymatic hydrogen peroxide detection, Sens. Actuators B, 2017, vol. 240, p. 142.
  29. Nia, P.M., Woi, P.M., and Alias, Y., Facile one-step electrochemical deposition of copper nanoparticles and reduced graphene oxide as nonenzymatic hydrogen peroxide sensor, Appl. Surf. Sci., 2017, vol. 413, p. 56.
  30. Ding, H.C., Zhang, L., Tang, Z.R., Dong, Y.P., and Chu, X.F., Black phosphorus quantum dots doped ZnO nanoparticles as efficient electrode materials for sensitive hydrogen peroxide detection, J. Electroanal. Chem., 2018, vol. 824, p. 161.