Electrochemically Switchable Glasses-Mirrors (Review)

V. A. Maiorov V. A. Maiorov
Российский электрохимический журнал
Abstract / Full Text

In an electrochemical cell with electrolyte containing silver or copper salts, the metal deposition takes place on the surface of a transparent electrically conducting coating. Under certain conditions, the metal film becomes specular and the electrochemical cell periodically switches from transparent to mirror state in response to changes in the voltage. The data obtained on electrochemical cells switchable between transparent to mirror states are analyzed. It is noted that the electrolyte properties play the decisive role in characteristics of such devices. Their prototypes with three optical states: transparent‑transient semitransparent‑mirror are realized recently. The modes are achieved in which the mirror state is preserved for a long period (over 2 h) at switched-off voltage (deenergized state). These results allow us to expect that the development of electrochemically switchable glasses-mirrors for windows will soon reach its commercial stage.

Author information
  • Yaroslav-the-Wise Novgorod State University, 173003, Velikii Novgorod, Russia

    V. A. Maiorov

  1. Maiorov, V.A., Commercial glazings with smart glasses. Part 1, Svetoprozrachnye Konstr., 2016, no. 1, p. 21.
  2. Maiorov, V.A., Commercial glazings with smart glasses. Part 2, Svetoprozrachnye Konstr., 2016, no. 2, p. 8.
  3. Zaromb, S., Theory and design principles of the reversible electroplating light modulator, J Electrochem. Soc., 1962, vol. 109, p. 903. https://doi.org/10.1149/1.2425204
  4. Carrière, D., Du Pasquier, A., Herrera Urbina, R., and Tarascon J.-M., A reversible inorganic electrochromic solution system, Sol. Energy Mater. Sol. Cells, 2000, vol. 62, p. 431.https://doi.org/10.1016/S0927-0248(00)00026-X
  5. Esplandiu, M.J. and Hagenström, H., Functionalized self-assembled monolayers and their influence on silver electrodeposition, Solid State Ionics, 2002, vol. 150, p. 39.https://doi.org/10.1016/S0167-2738(02)00262-X
  6. Tench D.M. and Warren L.F., Jr., US Patent 6552843 B1, 2003.
  7. Krastev, I., Valkova, T., and Zielonka, A., Effect of electrolysis conditions on the deposition of silver–bismuth alloys, J. Appl. Electrochem., 2003, vol. 33, p. 1199. https://doi.org/10.1023/B:JACH.0000003867.58916.47
  8. Foster, D.G., Shapir, Y., and Jorne, J., The effect of rate of surface growth on roughness scaling, J. Electrochem. Soc., 2005, vol. 152, p. C462. https://doi.org/10.1149/1.1921767
  9. Oliveira, M.R.S., Mello, D.A.A., Ponzio, E.A., and de Oliveira, S.C., KI effects on the reversible electrodeposition of silver on poly(ethylene oxide) for application in electrochromic devices, Electrochim. Acta, 2010, vol. 55, p. 3756. https://doi.org/10.1016/j.electacta.2009.11.023
  10. Fukui, R., Katayama, Y., and Miura, T., The influence of potential on electrodeposition of silver and formation of silver nanoparticles in some ionic liquids, J. Electrochem. Soc., 2011, vol. 158, p. D567. https://doi.org/10.1149/1.3610202
  11. Serizawa, N., Katayama, Y., and Miura, T., EQCM measurement of Ag  (I) /Ag reaction in an amide-type room-temperature ionic liquid, J. Electrochem. Soc., 2009, vol. 156, p. D503. https://doi.org/10.1149/1.3223669
  12. Araki, S., Nakamura, K., Kobayashi, K., Tsuboi, A., and Kobayashi, N., Electrochemical optical-modulation device with reversible transformation between transparent, mirror, and black, Adv. Mater., 2012, vol. 24, p. OP122.https://doi.org/10.1002/adma.201200060
  13. Park, C., Seo, S., Shin, H., Sarwade, B.D., Na, J., and Kim, E., Switchable silver mirrors with long memory effects, Chem. Sci., 2015, vol. 6, p. 596. https://doi.org/10.1039/c4sc01912a
  14. Kimura, R., Tsuboi, A., Nakamura, K., and Kobayashi, N., Effects of silver halide complexes on optical and electrochemical properties of silver deposition-based electrochromic device, Sol. Energy Mater. Sol. Cells, 2018, vol. 177, p. 128.https://doi.org/10.1016/j.solmat.2017.01.014
  15. Kim, T.-Y., Cho, S.M., Ah C.S., Suh, K.-S., Ryu, H., and Chu, H.Y., Electrochromic device for the reversible electrodeposition system, J. Inf. Disp., 2014, vol. 15, no. 1, p. 13.https://doi.org/10.1080/15980316.2014.882280
  16. Onodera, R., Seki, Y., Seki, S., Yamada, K., Sawada, Y., and Uchida, T., Smart windows, switchable between transparent, mirror, and black states, fabricated using rough and smooth indium tin oxide films deposited by spray chemical vapor deposition, Appl. Phys. Express, 2013, vol. 6, 026503 (1–3). https://doi.org/10.7567/APEX.6.026503
  17. Ye, T., Xiang, Y., Ji, H., Hu, C., and Wu, G., Electrodeposition-based electrochromic devices with reversible three-state optical transformation by using titanium dioxide nanoparticle modified FTO electrode, RSC Adv., 2016, vol. 6, p. 30769. https://doi.org/10.1039/C6RA03315F
  18. Wu, L., Yang, D., Fei, L., Huang, Y., Wu, F., Sun, Y., Shi, J., and Xiang, Y., Dip-coating process engineering and performance optimization for three-state electrochromic devices, Nanoscale Res. Lett., 2017, vol. 12, no. 1:390.https://doi.org/10.1186/s11671-017-2163-0
  19. Park, C., Na, J., Han, M., and Kim, E., Transparent electrochemical gratings from a patterned bistable silver mirror, ACS Nano, 2017, vol. 11, no. 7, p. 6977. https://doi.org/10.1021/acsnano.7b02294
  20. Barile, C.J., Slotcavage, D.J., Hou, J., Strand, M.T., Hernandez, T.S., and McGehee, M.D., Dynamic windows with neutral color, high contrast, and excellent durability using reversible metal electrodeposition, Joule, 2017, vol. 1, no. 1, p. 133.https://doi.org/10.1016/j.joule.2017.06.001
  21. Eh, A.L.-S., Lin, M.-F., Cui, M., Cai, G., and Lee, P.S., A copper-based reversible electrochemical mirror device with switchability between transparent, blue, and mirror states, J. Mater. Chem. C, 2017, vol. 5, no. 26, p. 6547. https://doi.org/10.1039/C7TC01070B
  22. Alcaraz, G.K.A., Juarez-Rolon, J.S., Burpee, N.A., and Barile, C.J., Thermally-stable dynamic windows based on reversible metal electrodeposition from aqueous electrolytes, J. Mater. Chem. C, 2018, vol. 6, no. 8, p. 2132. https://doi.org/10.1039/C7TC05222G