Examples



mdbootstrap.com



 
Статья
2016

A brief review: Past, present and future of lithium ion batteries


Florian Schipper Florian Schipper , Doron Aurbach Doron Aurbach
Российский электрохимический журнал
https://doi.org/10.1134/S1023193516120120
Abstract / Full Text

The review summarizes the development of lithium ion batteries beginning with the research of the 1970–1980s which lead to modern intercalation type batteries. Following the history of lithium ion batteries, material developments are outlined with a look at cathode materials, electrolyte solutions and anode materials. Finally, with lithium sulfur and lithium oxygen batteries two post intercalation type lithium batteries are discussed. The focus of the material discussions lies on basic understanding, problems and opportunities related to the materials.

Author information
  • Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel

    Florian Schipper & Doron Aurbach

References
  1. Schiffer, H. and Guerra, A., Sci. Education, 2014, vol. 24, no. 4, pp. 409–434.
  2. Russell, C.A., Annals Sci., 1959, vol. 15, no. 1, pp. 1–13.
  3. Preece, W., Telegraph engineers and of electricians, J. Soc., 1882, vol. 11, no. 41, pp. 150–151.
  4. Kurzweil, P., J. Power Sources, 2010, vol. 195, no. 14, pp. 4424–4434.
  5. Morimoto, M., El. Eng. Jpn., 2015, vol. 192, no. 2, pp. 31–38.
  6. Ajanovic, A., Wiley Interdisciplinary Rev.-En. Environ., 2015, vol. 4, no. 6, pp. 521–536.
  7. Shterenberg, I., Salama, M., and Gofer, Y., MRS Bull., 2014, vol. 39, no. 05, pp. 453–460.
  8. Kim, S.W., Seo, D.H., and Ma, X., Adv. En. Mater., 2012, vol. 2, no. 7, pp. 710–721.
  9. Janoschka, T., Hager, M.D., and Schubert, U.S., Adv. Mater., 2012, vol. 24, no. 48, pp. 6397–6409.
  10. Cairns, E.J. and Shimotake, H., Science, 1969, vol. 164, no. 3886, pp. 1347–1355.
  11. Hueso, K.B., Armand, M., and Rojo, T., En. Environ. Sci., 2013, vol. 6, no. 3, pp. 734–749.
  12. Greatbat, W., Lee, J.H., and Mathias, W., Ieee Trans. Biomed. Eng., 1971, vol. BM18, no. 5, p. 317.
  13. Greatbatch, W., Lithium-Iodine Battery, Google Patents, 1975.
  14. Whittingham, M.S. and Gamble, F.R., Jr., Mater. Res. Bull., 1975, vol. 10, no. 5, pp. 363–371.
  15. Whittingham, M.S., Science, 1976, vol. 192, no. 4244, pp. 1126–1127.
  16. Whittingham, M.S., Chalcogenide Battery, Google Patents, 1977.
  17. Peled, E., J. Electrochem. Soc., 1979, vol. 126, no. 12, pp. 2047–2051.
  18. Besenhard, J.O. and Eichinger, G., J. Electroanalyt. Chem. Interfacial Electrochem., 1976, vol. 68, no. 1, pp. 1–18.
  19. Yamaki, J.-I., Tobishima, S.-I., and Hayashi, K., J. Power Sources, 1998, vol. 74, no. 2, pp. 219–227.
  20. Rao, B.M.L., Francis, R.W., and Christopher, H.A., J. Electrochem. Soc., 1977, vol. 124, no. 10, pp. 1490–1492.
  21. Nicholso, M.., J. Electrochem. Soc., 1974, vol. 121, no. 6, pp. 734–738.
  22. Mizushima, K., Jones, P.C., and Wiseman, P.J., Mater. Res. Bull., 1980, vol. 15, no. 6, pp. 783–789.
  23. Amatucci, G.G., Tarascon, J.M., and Klein, L.C., J. Electrochem. Soc., 1996, vol. 143, no. 3, pp. 1114–1123.
  24. Reimers, J.N. and Dahn, J.R., J. Electrochem. Soc., 1992, vol. 139, no. 8, pp. 2091–2097.
  25. Ohzuku, T. and Ueda, A., J. Electrochem. Soc., 1994, vol. 141, no. 11, pp. 2972–2977.
  26. Doughty, D.H. and Pesaran, A., Subcontract Report, National Renewable Energy Laboratory, Golden,CO, 2012.
  27. Amatucci, G.G., Tarascon, J.M., and Klein, L.C., Solid State Ionics, 1996, vol. 83, no. 1–2, pp. 167–173.
  28. Besenhard, J.O. and Fritz, H.P., J. Electroanalyt. Chem. Interfacial Electrochem., 1974, vol. 53, no. 2, pp. 329–333.
  29. Basu, S., Zeller, C., and Flanders, P.J., Mater. Sci. Eng., 1979, vol. 38, no. 3, pp. 275–283.
  30. Basu, S., Rechargeable Battery, Google Patents, 1981.
  31. Besenhard, J.O., Carbon, 1976, vol. 14, no. 2, pp. 111–115.
  32. Takada, Y., Fujii, R., and Matsuo, K., TANSO, 1983, vol. 1983, no. 114, pp. 120–123.
  33. Dunning, J.S., Tiedemann, W.H., and Hsueh, L., J. Electrochem. Soc., 1971, vol. 118, no. 12, pp. 1886–1890.
  34. Yazami, R. and Touzain, P., J. Power Sources, 1983, vol. 9, no. 3, pp. 365–371.
  35. Fong, R., Vonsacken, U., and Dahn, J.R., J. Electrochem. Soc., 1990, vol. 137, no. 7, pp. 2009–2013.
  36. Verma, P., Maire, P., and Novák, P., Electrochim. Acta, 2010, vol. 55, no. 22, pp. 6332–6341.
  37. Aurbach, D., J. Power Sources, 2000, vol. 89, no. 2, pp. 206–218.
  38. Aurbach, D., Markovsky, B., and Shechter, A., J. Electrochem. Soc., 1996, vol. 143, no. 12, pp. 3809–3820.
  39. Besenhard, J.O., Winter, M., and Yang, J., J. Power Sources, 1995, vol. 54, no. 2, pp. 228–231.
  40. Aurbach, D., Ein-Eli, Y., and Markovsky, B., J. Electrochem. Soc., 1995, vol. 142, no. 9, pp. 2882–2890.
  41. Ein-Eli, Y., Markovsky, B., and Aurbach, D., Electrochim. Acta, 1994, vol. 39, no. 17, pp. 2559–2569.
  42. Aurbach, D., Ein-Eli, Y., and Chusid, O., J. Electrochem. Soc., 1994, vol. 141, no. 3, pp. 603–611.
  43. Aurbach, D., Levi, M.D., and Levi, E., J. Phys. Chem. B, 1997, vol. 101, no. 12, pp. 2195–2206.
  44. Sleigh, A.K. and von Sacken, U., Solid State Ionics, 1992, vol. 57, no. 1–2, pp. 99–102.
  45. Nagaura, T. and Tozawa, K., Prog. Batteries Solar Cells, 1990, no. 9, p. 209.
  46. Shukla, A.K., Venugopalan, S., and Hariprakash, B., J. Power Sources, 2001, vol. 100, no. 1–2, pp. 125–148.
  47. Nishi, Y., Performance of the first lithium ion battery and its process technology, in Lithium Ion Batteries, Wiley-VCH Verlag GmbH, 2007, pp. 181–198.
  48. Yoshio, M., Brodd, R.J., and Kozawa, A., Lithium-Ion Batteries, Springer, 2009.
  49. Tarascon, J.M. and Armand, M., Nature, 2001, vol. 414, no. 6861, pp. 359–367.
  50. Erickson, E.M., Ghanty, C., and Aurbach, D., J. Phys. Chem. Lett., 2014, vol. 5, no. 19, pp. 3313–3324.
  51. Markevich, E., Fridman, K., and Sharabi, R., J. Electrochem. Soc., 2013, vol. 160, no. 10, pp. A1824–A1833.
  52. Fridman, K., Sharabi, R., and Markevich, E., ECS Electrochem. Lett., 2013, vol. 2, no. 8, pp. A84–A87.
  53. Aurbach, D., Nimberger, A., and Markovsky, B., Chem. Mater., 2002, vol. 14, no. 10, pp. 4155–4163.
  54. Kamali, A.R. and Fray, D.J., Rev. Adv. Mater. Sci., 2011, vol. 27, no. 1, pp. 14–24.
  55. Zhang, W.-J., J. Power Sources, 2011, vol. 196, no. 1, pp. 13–24.
  56. Ji, L., Lin, Z., and Alcoutlabi, M., En. Environ. Sci., 2011, vol. 4, no. 8, pp. 2682–2699.
  57. Erickson, E.M., Markevich, E., and Salitra, G., J. Electrochem. Soc., 2015, vol. 162, pp. A2424–A2438.
  58. Xu, K., Chem. Rev., 2004, vol. 104, no. 10, pp. 4303–4418.
  59. Aurbach, D., Talyosef, Y., and Markovsky, B., Electrochim. Acta, 2004, vol. 50, no. 2–3, pp. 247–254.
  60. Leroux, F., Guyomard, D., and Piffard, Y., Solid State Ionics, 1995, vol. 80, no. 3–4, pp. 299–306.
  61. Rossouw, M.H., Liles, D.C., and Thackeray, M.M., J. Solid State Chem., 1993, vol. 104, no. 2, pp. 464–466.
  62. Mishra, S. and Ceder, G., Phys. Rev. B, 1999, vol. 59, no. 9, p. 6120.
  63. Armstrong, A.R. and Bruce, P.G., Nature, 1996, vol. 381, no. 6582, pp. 499–500.
  64. Capitaine, F., Gravereau, P., and Delmas, C., Solid State Ionics, 1996, vol. 89, no. 3–4, pp. 197–202.
  65. Chen, R. and Whittingham, M.S., J. Electrochem. Soc., 1997, vol. 144, no. 4, pp. L64–L67.
  66. Bruce, P., Armstrong, A.R., and Gitzendanner, R., J. Mater. Chem., 1999, vol. 9, no. 1, pp. 193–198.
  67. Shao-Horn, Y., Hackney, S.A., and Armstrong, A.R., J. Electrochem. Soc., 1999, vol. 146, no. 7, pp. 2404–2412.
  68. Armstrong, A.R., Robertson, A.D., and Gitzendanner, R., J. Solid State Chem., 1999, vol. 145, no. 2, pp. 549–556.
  69. Armstrong, A.R., Robertson, A.D., and Bruce, P.G., Electrochim. Acta, 1999, vol. 45, no. 1–2, pp. 285–294.
  70. Ohzuku, T., Ueda, A., and Nagayama, M., J. Electrochem. Soc., 1993, vol. 140, no. 7, pp. 1862–1870.
  71. Dahn, J., von Sacken, U., and Michal, C., Solid State Ionics, 1990, vol. 44, no. 1, pp. 87–97.
  72. Ohzuku, T., Ueda, A., and Nagayama, M., Electrochim. Acta, 1993, vol. 38, no. 9, pp. 1159–1167.
  73. Rougier, A., Gravereau, P., and Delmas, C., J. Electrochem. Soc., 1996, vol. 143, no. 4, pp. 1168–1175.
  74. Delmas, C. and Saadoune, I., Solid State Ionics, 1992, vol. 53–56, Part 1, pp. 370–375.
  75. Arai, H., Okada, S., and Sakurai, Y., Solid State Ionics, 1998, vol. 109, no. 3–4, pp. 295–302.
  76. Rossen, E., Jones, C.D.W., and Dahn, J.R., Solid State Ionics, 1992, vol. 57, no. 3–4, pp. 311–318.
  77. Ohzuku, T. and Makimura, Y., Chem. Lett., 2001, no. 8, pp. 744–745.
  78. Lu, Z., MacNeil, D.D., and Dahn, J.R., Electrochem. Solid-State Lett., 2001, vol. 4, no. 11, pp. A191–A194.
  79. Reed, J. and Ceder, G., Electrochem. Solid-State Lett., 2002, vol. 5, no. 7, pp. A145–A148.
  80. Venkatraman, S. and Manthiram, A., Chem. Mater., 2003, vol. 15, no. 26, pp. 5003–5009.
  81. Arachi, Y., Kobayashi, H., and Emura, S., Chem. Lett., 2003, vol. 32, no. 1, pp. 60–61.
  82. Kang, K., Meng, Y.S., and Bréger, J., Science, 2006, vol. 311, no. 5763, pp. 977–980.
  83. Zhecheva, E. and Stoyanova, R., Solid State Ionics, 1993, vol. 66, no. 1–2, pp. 143–149.
  84. Levi, M.D., Gamolsky, K., and Aurbach, D., J. Electroanalyt. Chem., 1999, vol. 477, no. 1, pp. 32–40.
  85. Rougier, A., Saadoune, I., and Gravereau, P., Solid State Ionics, 1996, vol. 90, no. 1–4, pp. 83–90.
  86. Liu, Z., Yu, A., and Lee, J.Y., J. Power Sources, 1999, vol. 81–82, pp. 416–419.
  87. Liu, W., Oh, P., and Liu, X., Angewandte Chemie Int. Ed., 2015, vol. 54, no. 15, pp. 4440–4457.
  88. Manthiram, A., Vadivel Murugan, A., and Sarkar, A., En. Environ. Sci., 2008, vol. 1, no. 6, pp. 621–638.
  89. Ohzuku, T. and Makimura, Y., Chem. Lett., 2001, vol. 30, no. 7, pp. 642–643.
  90. Yabuuchi, N. and Ohzuku, T., J. Power Sources, 2003, vol. 119–121, pp. 171–174.
  91. Kumar, P.S., Sakunthala, A., and Reddy, M.V., J. Solid State Electrochem., 2015, vol. 20, pp. 1–12.
  92. Santhanam, R. and Rambabu, B., J. Power Sources, 2010, vol. 195, no. 13, pp. 4313–4317.
  93. Cao, H., Zhang, Y., and Zhang, J., Solid State Ionics, 2005, vol. 176, no. 13–14, pp. 1207–1211.
  94. Li, L.-J., Li, X.-H., and Wang, Z.-X., Powder Technol., 2011, vol. 206, no. 3, pp. 353–357.
  95. Eom, J., Kim, M.G., and Cho, J., J. Electrochem. Soc., 2008, vol. 155, no. 3, pp. A239–A245.
  96. Sun, Y.-K., Lee, B.-R., and Noh, H.-J., J. Mater. Chem., 2011, vol. 21, no. 27, pp. 10108–10112.
  97. Bak, S.-M., Hu, E., and Zhou, Y., ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 24, pp. 22594–22601.
  98. Cho, J., Kim, T.-J., and Kim, J., J. Electrochem. Soc., 2004, vol. 151, no. 11, pp. A1899–A1904.
  99. Myung, S.-T., Lee, K.-S., and Yoon, C.S., J. Phys. Chem. C, 2010, vol. 114, no. 10, pp. 4710–4718.
  100. Sun, Y.-K., Kim, D.-H., and Yoon, C.S., Adv. Functional Mater., 2010, vol. 20, no. 3, pp. 485–491.
  101. Koenig, G.M., Belharouak, I., and Deng, H., Chem. Mater., 2011, vol. 23, no. 7, pp. 1954–1963.
  102. Ohzuku, T., Yanagawa, T., and Kouguchi, M., J. Power Sources, 1997, vol. 68, no. 1, pp. 131–134.
  103. Ohzuku, T., Ueda, A., and Kouguchi, M., J. Electrochem. Soc., 1995, vol. 142, no. 12, pp. 4033–4039.
  104. Guilmard, M., Rougier, A., and Grüne, M., J. Power Sources, 2003, vol. 115, no. 2, pp. 305–314.
  105. Weaving, J.S., Coowar, F., and Teagle, D.A., J. Power Sources, 2001, vol. 97–98, p. 733–735.
  106. Chen, C.H., Liu, J., and Stoll, M.E., J. Power Sources, 2004, vol. 128, no. 2, pp. 278–285.
  107. Jo, M., Noh, M., and Oh, P., Adv. En. Mater., 2014, vol. 4, no. 13, p. 1301583.
  108. Thackeray, M.M., Johnson, P.J., and de Picciotto, L.A., Mater. Res. Bull., 1984, vol. 19, no. 2, pp. 179–187.
  109. Thackeray, M.M., de Kock, A., and David, W.I.F., Mater. Res. Bull., 1993, vol. 28, no. 10, pp. 1041–1049.
  110. Tarascon, J.M., Wang, E., and Shokoohi, F.K., J. Electrochem. Soc., 1991, vol. 138, no. 10, pp. 2859–2864.
  111. Ohzuku, T., Kitagawa, M., and Hirai, T., J. Electrochem. Soc., 1990, vol. 137, no. 3, pp. 769–775.
  112. David, W.I.F., Thackeray, M.M., and De Picciotto, L.A., J. Solid State Chem., 1987, vol. 67, no. 2, pp. 316–323.
  113. Nakayama, M., Kaneko, M., and Wakihara, M., Phys. Chem. Chem. Phys., 2012, vol. 14, no. 40, pp. 13963–13970.
  114. Aurbach, D., Levi, M.D., and Gamulski, K., J. Power Sources, 1999, vol. 81–82, pp. 472–479.
  115. Shin, Y. and Manthiram, A., J. Electrochem. Soc., 2004, vol. 151, no. 2, pp. A204–A208.
  116. Xia, Y., Zhou, Y., and Yoshio, M., J. Electrochem. Soc., 1997, vol. 144, no. 8, pp. 2593–2600.
  117. Thackeray, M.M., Shao-Horn, Y., and Kahaian, A.J., Electrochem. Solid-State Lett., 1998, vol. 1, no. 1, pp. 7–9.
  118. Du Pasquier, A., Blyr, A., and Courjal, P., J. Electrochem. Soc., 1999, vol. 146, no. 2, pp. 428–436.
  119. Gummow, R.J., de Kock, A., and Thackeray, M.M., Solid State Ionics, 1994, vol. 69, no. 1, pp. 59–67.
  120. Myung, S.-T., Komaba, S., and Kumagai, N., J. Electrochem. Soc., 2001, vol. 148, no. 5, pp. A482–A489.
  121. Lee, Y.-S., Kumada, N., and Yoshio, M., J. Power Sources, 2001, vol. 96, no. 2, pp. 376–384.
  122. Gnanaraj, J.S., Pol, V.G., and Gedanken, A., Electrochem. Commun., 2003, vol. 5, no. 11, pp. 940–945.
  123. Ha, H.-W., Yun, N.J., and Kim, K., Electrochim. Acta, 2007, vol. 52, no. 9, pp. 3236–3241.
  124. Sun, Y.-K., Hong, K.-J., and Prakash, J., J. Electrochem. Soc., 2003, vol. 150, no. 7, pp. A970–A972.
  125. Liu, H. and Tang, D., Russ. J. Electrochem., 2009, vol. 45, no. 7, pp. 762–764.
  126. Liu, D., He, Z., and Liu, X., Mater. Lett., 2007, vol. 61, no. 25, pp. 4703–4706.
  127. Kim, H.-S., Kim, Y., and Kim, S.-I., J. Power Sources, 2006, vol. 161, no. 1, pp. 623–627.
  128. Li, X., Liu, J., and Meng, X., J. Power Sources, 2014, vol. 247, pp. 57–69.
  129. Kitao, H., Fujihara, T., and Takeda, K., Electrochem. Solid-State Lett., 2005, vol. 8, no. 2, pp. A87–A90.
  130. Röder, P., Baba, N., and Wiemhöfer, H.D., J. Power Sources, 2014, vol. 248, pp. 978–987.
  131. Smith, A.J., Smith, S.R., and Byrne, T., J. Electrochem. Soc., 2012, vol. 159, no. 10, pp. A1696–A1701.
  132. Guohua, L., Ikuta, H., and Uchida, T., J. Electrochem. Soc., 1996, vol. 143, no. 1, pp. 178–182.
  133. Zhong, Q., Bonakdarpour, A., and Zhang, M., J. Electrochem. Soc., 1997, vol. 144, no. 1, pp. 205–213.
  134. Sigala, C., Guyomard, D., and Verbaere, A., Solid State Ionics, 1995, vol. 81, no. 3–4, pp. 167–170.
  135. Talyosef, Y., Markovsky, B., and Lavi, R., J. Electrochem. Soc., 2007, vol. 154, no. 7, pp. A682–A691.
  136. Patoux, S., Daniel, L., and Bourbon, C., J. Power Sources, 2009, vol. 189, no. 1, pp. 344–352.
  137. Choi, W. and Manthiram, A., J. Electrochem. Soc., 2006, vol. 153, no. 9, pp. A1760–A1764.
  138. Kim, J.-H., Pieczonka, N.P.W., and Li, Z., Electrochim. Acta, 2013, vol. 90, pp. 556–562.
  139. Talyosef, Y., Markovsky, B., and Salitra, G., J. Power Sources, 2005, vol. 146, no. 1–2, pp. 664–669.
  140. Pieczonka, N.P., Liu, Z., and Lu, P., J. Phys. Chem. C, 2013, vol. 117, no. 31, pp. 15947–15957.
  141. Kim, J.H., Myung, S.T., and Yoon, C.S., Chem. Mater., 2004, vol. 16, no. 5, pp. 906–914.
  142. Kim, J.-H., Myung, S.-T., and Yoon, C.S., J. Electrochem. Soc., 2004, vol. 151, no. 11, pp. A1911–A1918.
  143. Arunkumar, T.A. and Manthiram, A., Electrochem. Solid-State Lett., 2005, vol. 8, no. 8, pp. A403–A405.
  144. Kunduraci, M. and Amatucci, G., Electrochim. Acta, 2008, vol. 53, no. 12, pp. 4193–4199.
  145. Jin, Y.-C., Lin, C.-Y., and Duh, J.-G., Electrochim. Acta, 2012, vol. 69, pp. 45–50.
  146. Xia, H., Tang, S., and Lu, L., Electrochim. Acta, 2007, vol. 52, no. 8, pp. 2822–2828.
  147. Wu, H.M., Belharouak, I., and Abouimrane, A., J. Power Sources, 2010, vol. 195, no. 9, pp. 2909–2913.
  148. Fan, Y.K., Wang, J.M., and Tang, Z., Electrochim. Acta, 2007, vol. 52, no. 11, pp. 3870–3875.
  149. Sun, Y.K., Hong, K.J., and Prakash, J., Electrochem. Commun., 2002, vol. 4, no. 4, pp. 344–348.
  150. Liu, J. and Manthiram, A., Chem. Mater., 2009, vol. 21, no. 8, pp. 1695–1707.
  151. Padhi, A., Nanjundaswamy, K., and Goodenough, J., Electrochem. Soc. Meet. Abstr., 1996, p. 96.
  152. Padhi, A.K., Nanjundaswamy, K.S., and Goodenough, J.B., J. Electrochem. Soc., 1997, vol. 144, no. 4, pp. 1188–1194.
  153. Arnold, G., Garche, J., and Hemmer, R., J. Power Sources, 2003, vol. 119–121, pp. 247–251.
  154. Amin, R., Balaya, P., and Maier, J., Electrochem. Solid-State Lett., 2007, vol. 10, no. 1, pp. A13–A16.
  155. Prosini, P.P., Lisi, M., and Zane, D., Solid State Ionics, 2002, vol. 148, no. 1–2, pp. 45–51.
  156. Andersson, A.S., Kalska, B., and Häggström, L., Solid State Ionics, 2000, vol. 130, no. 1–2, pp. 41–52.
  157. Huang, H., Yin, S.-C., and Nazar, L.F., Electrochem. Solid-State Lett., 2001, vol. 4, no. 10, pp. A170–A172.
  158. Shin, H.C., Cho, W.I., and Jang, H., Electrochim. Acta, 2006, vol. 52, no. 4, pp. 1472–1476.
  159. Dominko, R., Bele, M., and Gaberscek, M., J. Electrochem. Soc., 2005, vol. 152, no. 3, pp. A607–A610.
  160. Chung, S.-Y., Bloking, J.T., and Chiang, Y.-M., Nat. Mater., 2002, vol. 1, no. 2, pp. 123–128.
  161. Herle, P.S., Ellis, B., and Coombs, N., Nat. Mater., 2004, vol. 3, no. 3, pp. 147–152.
  162. Hsu, K.-F., Tsay, S.-Y., and Hwang, B.-J., J. Mater. Chem., 2004, vol. 14, no. 17, pp. 2690–2695.
  163. Wang, L., Huang, Y., and Jiang, R., Electrochim. Acta, 2007, vol. 52, no. 24, pp. 6778–6783.
  164. Liu, J., Wang, J., and Yan, X., Electrochim. Acta, 2009, vol. 54, no. 24, pp. 5656–5659.
  165. Gu, Y.-J., Zeng, C.-S., and Wu, H.-K., Mater. Lett., 2007, vol. 61, no. 25, pp. 4700–4702.
  166. Thackeray, M.M., J. Am. Ceram. Soc., 1999, vol. 82, no. 12, pp. 3347–3354.
  167. Takami, N., Inagaki, H., and Tatebayashi, Y., J. Power Sources, 2013, vol. 244, pp. 469–475.
  168. Wang, W., Choi, D., and Yang, Z., Metallurg. Mater. Trans. A, 2012, vol. 44, no. 1, pp. 21–25.
  169. Zhu, G.-N., Liu, H.-J., and Zhuang, J.-H., En. Environ. Sci., 2011, vol. 4, no. 10, pp. 4016–4022.
  170. Li, G., Azuma, H., and Tohda, M., Electrochem. Solid-State Lett., 2002, vol. 5, no. 6, pp. A135–A137.
  171. Martha, S.K., Grinblat, J., and Haik, O., Angewandte Chem. Int. Ed., 2009, vol. 48, no. 45, pp. 8559–8563.
  172. Amine, K., Yasuda, H., and Yamachi, M., Electrochem. Solid-State Lett., 2000, vol. 3, no. 4, pp. 178–179.
  173. Wolfenstine, J. and Allen, J., J. Power Sources, 2005, vol. 142, no. 1–2, pp. 389–390.
  174. Delacourt, C., Laffont, L., and Bouchet, R., J. Electrochem. Soc., 2005, vol. 152, no. 5, pp. A913–A921.
  175. Martha, S.K., Markovsky, B., and Grinblat, J., J. Electrochem. Soc., 2009, vol. 156, no. 7, pp. A541–A552.
  176. Kim, J.-K., Chauhan, G.S., and Ahn, J.-H., J. Power Sources, 2009, vol. 189, no. 1, pp. 391–396.
  177. Yamada, A., Takei, Y., and Koizumi, H., Chem. Mater., 2006, vol. 18, no. 3, pp. 804–813.
  178. Dimesso, L., Becker, D., and Spanheimer, C., J. Solid State Electrochem., 2012, vol. 16, no. 12, pp. 3791–3798.
  179. Li, H.H., Jin, J., and Wei, J.P., Electrochem. Commun., 2009, vol. 11, no. 1, pp. 95–98.
  180. Borgel, V., Markevich, E., and Aurbach, D., J. Power Sources, 2009, vol. 189, no. 1, pp. 331–336.
  181. Strobel, P. and Lambert-Andron, B., J. Solid State Chem., 1988, vol. 75, no. 1, pp. 90–98.
  182. Boulineau, A., Croguennec, L., and Delmas, C., Chem. Mater., 2009, vol. 21, no. 18, pp. 4216–4222.
  183. Robertson, A.D. and Bruce, P.G., Chem. Mater., 2003, vol. 15, no. 10, pp. 1984–1992.
  184. Kalyani, P., Chitra, S., and Mohan, T., J. Power Sources, 1999, vol. 80, no. 1–2, pp. 103–106.
  185. Robertson, A.D. and Bruce, P.G., Chem. Commun., 2002, no. 23, pp. 2790–2791.
  186. Lu, Z. and Dahn, J.R., J. Electrochem. Soc., 2002, vol. 149, no. 7, pp. A815–A822.
  187. Richard, M.N., Fuller, E.W., and Dahn, J.R., Solid State Ionics, 1994, vol. 73, no. 1, pp. 81–91.
  188. Moshkovich, M., Cojocaru, M., and Gottlieb, H.E., J. Electroanalyt. Chem., 2001, vol. 497, no. 1–2, pp. 84–96.
  189. Kumai, K., Miyashiro, H., and Kobayashi, Y., J. Power Sources, 1999, vol. 81–82, pp. 715–719.
  190. Francis Amalraj, S., Markovsky, B., and Sharon, D., Electrochim. Acta, 2012, vol. 78, pp. 32–39.
  191. Yu, D.Y.W., Yanagida, K., and Kato, Y., J. Electrochem. Soc., 2009, vol. 156, no. 6, pp. A417–A424.
  192. Lim, J., Moon, J., and Gim, J., J. Mater. Chem., 2012, vol. 22, no. 23, pp. 11772–11777.
  193. Jain, G., Yang, J., and Balasubramanian, M., Chem. Mater., 2005, vol. 17, no. 15, pp. 3850–3860.
  194. Thackeray, M.M., Kang, S.H., and Johnson, C.S., Electrochem. Commun., 2006, vol. 8, no. 9, pp. 1531–1538.
  195. Johnson, C.S., Li, N., and Lefief, C., Chem. Mater., 2008, vol. 20, no. 19, pp. 6095–6106.
  196. Zhu, Z. and Zhu, L., J. Power Sources, 2014, vol. 256, pp. 178–182.
  197. Zhao, T., Chen, S., and Li, L., J. Power Sources, 2013, vol. 228, pp. 206–213.
  198. Amalraj, F., Talianker, M., and Markovsky, B., J. Electrochem. Soc., 2013, vol. 160, no. 2, pp. A324–A337.
  199. Martha, S.K., Nanda, J., and Veith, G.M., J. Power Sources, 2012, vol. 199, pp. 220–226.
  200. Mohanty, D., Kalnaus, S., and Meisner, R.A., J. Power Sources, 2013, vol. 229, pp. 239–248.
  201. Nayak, P.K., Grinblat, J., and Levi, M., J. Electrochem. Soc., 2014, vol. 161, no. 10, pp. A1534–A1547.
  202. Zheng, J.M., Li, J., and Zhang, Z.R., Solid State Ionics, 2008, vol. 179, no. 27–32, pp. 1794–1799.
  203. Wang, Z., Liu, E., and He, C., J. Power Sources, 2013, vol. 236, pp. 25–32.
  204. Wang, Z., Liu, E., and Guo, L., Surf. Coatings Technol., 2013, vol. 235, pp. 570–576.
  205. Zheng, J.M., Zhang, Z.R., and Wu, X.B., J. Electrochem. Soc., 2008, vol. 155, no. 10, pp. A775–A782.
  206. Amalraj, F., Talianker, M., and Markovsky, B., J. Electrochem. Soc., 2013, vol. 160, no. 11, pp. A2220–A2233.
  207. Johnson, C.S., Li, N., and Lefief, C., Electrochem. Commun., 2007, vol. 9, no. 4, pp. 787–795.
  208. Yang, X., Wang, D., and Yu, R., J. Mater. Chem. A, 2014, vol. 2, no. 11, pp. 3899–3911.
  209. Sathiya, M., Rousse, G., and Ramesha, K., Nat. Mater., 2013, vol. 12, no. 9, pp. 827–835.
  210. Sathiya, M., Leriche, J.B., and Salager, E., Nat. Commun., 2015, no. 6, p. 6276.
  211. Sathiya, M., Abakumov, A.M., and Foix, D., Nat. Mater., 2015, vol. 14, no. 2, pp. 230–238.
  212. Rozier, P. and Tarascon, J.M., J. Electrochem. Soc., 2015, vol. 162, no. 14, pp. A2490–A2499.
  213. Wood Iii, D.L., Li, J., and Daniel, C., J. Power Sources, 2015, vol. 275, pp. 234–242.
  214. Henriksen, G., Amine, K., and Liu, J., Argonne Nat. Lab. ANL-03/5, 2003, vol. 1, pp. 1–20.
  215. Tarascon, J.M. and Guyomard, D., Solid State Ionics, 1994, vol. 69, no. 3, pp. 293–305.
  216. Zhang, Z., Hu, L., and Wu, H., En. Environ. Sci., 2013, vol. 6, no. 6, pp. 1806–1810.
  217. Achiha, T., Nakajima, T., and Ohzawa, Y., J. Electrochem. Soc., 2010, vol. 157, no. 6, pp. A707–A712.
  218. Markevich, E., Salitra, G., and Fridman, K., Langmuir, 2014, vol. 30, no. 25, pp. 7414–7424.
  219. Xu, K., Zhang, S., and Allen, J.L., J. Electrochem. Soc., 2002, vol. 149, no. 8, pp. A1079–A1082.
  220. Jow, T.R., Xu, K., and Borodin, O., Electrolytes for Lithium and Lithium-Ion Batteries, 2014, Springer, vol.58.
  221. Möller, K.-C., Hodal, T., and Appel, W., J. Power Sources, 2001, vol. 97, pp. 595–597.
  222. Yariv, O., Hirshberg, D., and Zinigrad, E., J. Electrochem. Soc., 2014, vol. 161, no. 9, pp. A1422–A1431.
  223. Selim, R. and Bro, P., J. Electrochem. Soc., 1974, vol. 121, no. 11, pp. 1457–1459.
  224. Dampier, F.W. and Brummer, S.B., Electrochim. Acta, 1977, vol. 22, no. 12, pp. 1339–1345.
  225. Sekai, K., Azuma, H., and Omaru, A., J. Power Sources, 1993, vol. 43, no. 1–3, pp. 241–244.
  226. Kanamura, K., J. Power Sources, 1999, vol. 81–82, pp. 123–129.
  227. Park, M., Zhang, X., and Chung, M., J. Power Sources, 2010, vol. 195, no. 24, pp. 7904–7929.
  228. Barlowz, C.G., Electrochem. Solid-State Lett., 1999, vol. 2, no. 8, pp. 362–364.
  229. Kawamura, T., Okada, S., and Yamaki, J.-i., J. Power Sources, 2006, vol. 156, no. 2, pp. 547–554.
  230. Blyr, A., Sigala, C., and Amatucci, G., J. Electrochem. Soc., 1998, vol. 145, no. 1, pp. 194–209.
  231. Aurbach, D., J. Power Sources, 2003, vol. 119–121, pp. 497–503.
  232. Kim, D., Park, S., and Chae, O.B., J. Electrochem. Soc., 2012, vol. 159, no. 3, pp. A193–A197.
  233. Xu, W. and Angell, C.A., Electrochem. Solid-State Lett., 2001, vol. 4, no. 1, pp. E1–E4.
  234. Lischka, U., Wietelmann, U., and Wegner, M., Lithium Bisoxalatoborate Used as Conducting Salt in Lithium Ion Batteries, Google Patents, 1999.
  235. Xu, K., J. Electrochem. Soc., 2008, vol. 155, no. 10, pp. A733–A738.
  236. Amereller, M., Multerer, M., and Schreiner, C., J. Chem. Eng. Data, 2009, vol. 54, no. 2, pp. 468–471.
  237. Xu, K., Zhang, S., and Jow, T.R., Electrochem. Solid-State Lett., 2002, vol. 5, no. 1, pp. A26–A29.
  238. Jiang, J., Fortier, H., and Reimers, J.N., J. Electrochem. Soc., 2004, vol. 151, no. 4, pp. A609–A613.
  239. Andersson, A.M., Herstedt, M., and Bishop, A.G., Electrochim. Acta, 2002, vol. 47, no. 12, pp. 1885–1898.
  240. Steudte, S., Neumann, J., and Bottin-Weber, U., Green Chem., 2012, vol. 14, no. 9, pp. 2474–2483.
  241. Zhang, S.S. and Jow, T.R., J. Power Sources, 2002, vol. 109, no. 2, pp. 458–464.
  242. McOwen, D.W., Seo, D.M., and Borodin, O., En. Environ. Sci., 2014, vol. 7, no. 1, pp. 416–426.
  243. Dahbi, M., Ghamouss, F., and Tran-Van, F., J. Power Sources, 2011, vol. 196, no. 22, pp. 9743–9750.
  244. Jow, T.R., Xu, K., and Ding, M.S., J. Electrochem. Soc., 2004, vol. 151, no. 10, pp. A1702–A1706.
  245. Zhang, S.S., J. Power Sources, 2006, vol. 162, no. 2, pp. 1379–1394.
  246. Aurbach, D., Gnanaraj, J.S., and Geissler, W., J. Electrochem. Soc., 2004, vol. 151, no. 1, pp. A23–A30.
  247. Aurbach, D., Gamolsky, K., and Markovsky, B., Electrochim. Acta, 2002, vol. 47, no. 9, pp. 1423–1439.
  248. Wrodnigg, G.H., Besenhard, J.O., and Winter, M., J. Electrochem. Soc., 1999, vol. 146, no. 2, pp. 470–472.
  249. Xu, K., Zhang, S., and Jow, T.R., Electrochem. Solid-State Lett., 2005, vol. 8, no. 7, pp. A365–A368.
  250. Hiroi, O., Hamano, K., and Yoshida, Y., Battery Electrolytic Solution with Fluoride-Ion-Dissociating Salt and Battery Using the Same, Google Patents, 2001.
  251. Zhang, S.S., Xu, K., and Jow, T.R., Electrochem. Solid-State Lett., 2002, vol. 5, no. 9, pp. A206–A208.
  252. Saidi, M.Y., Gao, F., and Barker, J., Additive to Stabilize Electrochemical Cell, Google Patents, 1998.
  253. Takechi, K., Koiwai, A., and Shiga, T., Nonaqueous Electrolytic Solution for Battery and Nonaqueous Electrolytic Solution Battery, Google Patents, 2000.
  254. Ziv, B., Borgel, V., and Aurbach, D., J. Electrochem. Soc., 2014, vol. 161, no. 10, pp. A1672–A1680.
  255. Burns, J.C., Jain, G., and Smith, A.J., J. Electrochem. Soc., 2011, vol. 158, no. 3, pp. A255–A261.
  256. Smith, A.J., Burns, J.C., and Trussler, S., J. Electrochem. Soc., 2010, vol. 157, no. 2, pp. A196–A202.
  257. Bond, T.M., Burns, J.C., and Stevens, D.A., J. Electrochem. Soc., 2013, vol. 160, no. 3, pp. A521–A527.
  258. Yao, J., Wang, G.X., and Ahn, J.-h., J. Power Sources, 2003, vol. 114, no. 2, pp. 292–297.
  259. Yoshio, M., Wang, H., and Fukuda, K., J. Mater. Chem., 2004, vol. 14, no. 11, pp. 1754–1758.
  260. Hatch, G., http://www.techmetalsresearch.com/. 2014.
  261. Prakash, A.S., Manikandan, P., and Ramesha, K., Chem. Mater., 2010, vol. 22, no. 9, pp. 2857–2863.
  262. Yi, T.-F., Yang, S.-Y., and Xie, Y., J. Mater. Chem. A, 2015, vol. 3, no. 11, pp. 5750–5777.
  263. Mukhopadhyay, A. and Sheldon, B.W., Progress Mater. Sci., 2014, vol. 63, pp. 58–116.
  264. Yoshimatsu, I., Hirai, T., and Yamaki, J.i., J. Electrochem. Soc., 1988, vol. 135, no. 10, pp. 2422–2427.
  265. Xu, W., Wang, J., and Ding, F., En. Environ. Sci., 2014, vol. 7, no. 2, pp. 513–537.
  266. Gofer, Y., Ben-Zion, M., and Aurbach, D., J. Power Sources, 1992, vol. 39, no. 2, pp. 163–178.
  267. Dan, P., Mengeritsky, E., and Aurbach, D., J. Power Sources, 1997, vol. 68, no. 2, pp. 443–447.
  268. Aurbach, D., Youngman, O., and Gofer, Y., Electrochim. Acta, 1990, vol. 35, no. 3, pp. 625–638.
  269. Zhang, T., Imanishi, N., and Hasegawa, S., J. Electrochem. Soc., 2008, vol. 155, no. 12, pp. A965–A969.
  270. Payne, D.R. and Wright, P.V., Polymer, 1982, vol. 23, no. 5, pp. 690–693.
  271. Herbert, E.G., Tenhaeff, W.E., and Dudney, N.J., Thin Solid Films, 2011, vol. 520, no. 1, pp. 413–418.
  272. Quartarone, E. and Mustarelli, P., Chem. Soc. Rev., 2011, vol. 40, no. 5, pp. 2525–2540.
  273. Winter, M. and Besenhard, J.O., Electrochim. Acta, 1999, vol. 45, no. 1, pp. 31–50.
  274. Ulus, A., Rosenberg, Y., and Burstein, L., J. Electrochem. Soc., 2002, vol. 149, no. 5, pp. A635–A643.
  275. Wachtler, M., Besenhard, J.O., and Winter, M., J. Power Sources, 2001, vol. 94, no. 2, pp. 189–193.
  276. Li, H., Huang, X., and Chen, L., Solid State Ionics, 2000, vol. 135, no. 1, pp. 181–191.
  277. Kim, J.W., Ryu, J.H., and Lee, K.T., J. Power Sources, 2005, vol. 147, no. 1–2, pp. 227–233.
  278. Lu, L., Chen, X., and Huang, X., Science, 2009, vol. 323, no. 5914, pp. 607–610.
  279. Yang, J., Winter, M., and Besenhard, J.O., Solid State Ionics, 1996, vol. 90, no. 1–4, pp. 281–287.
  280. Liu, X.H., Zhong, L., and Huang, S., ACS Nano, 2012, vol. 6, no. 2, pp. 1522–1531.
  281. Saint, J., Morcrette, M., and Larcher, D., Adv. Functional Mater., 2007, vol. 17, no. 11, pp. 1765–1774.
  282. Takamura, T., Ohara, S., and Uehara, M., J. Power Sources, 2004, vol. 129, no. 1, pp. 96–100.
  283. Ohara, S., Suzuki, J., and Sekine, K., J. Power Sources, 2004, vol. 136, no. 2, pp. 303–306.
  284. Takamura, T., Uehara, M., and Suzuki, J., J. Power Sources, 2006, vol. 158, no. 2, pp. 1401–1404.
  285. Beaulieu, L.Y., Hewitt, K.C., and Turner, R.L., J. Electrochem. Soc., 2003, vol. 150, no. 2, pp. A149–A156.
  286. Elazari, R., Salitra, G., and Gershinsky, G., Electrochem. Commun., 2012, vol. 14, no. 1, pp. 21–24.
  287. Gay, E.C., Steunenberg, R.K., and Battles, J.E., 8th Intersociety Energy Conversion Engineering Conference Proceedings, 1973, pp. 96–103.
  288. Ji, X. and Nazar, L.F., J. Mater. Chem., 2010, vol. 20, no. 44, pp. 9821–9826.
  289. Rosenman, A., Markevich, E., and Salitra, G., Adv. En. Mater., 2015, vol. 5, no. 16, p. 1500212.
  290. Ji, X., Lee, K.T., and Nazar, L.F., Nat. Mater., 2009, vol. 8, no. 6, pp. 500–506.
  291. Nehb, W. and Vydra, K., Sulfur, in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2000.
  292. Chung, W.J., Griebel, J.J., and Kim, E.T., Nat. Chem., 2013, vol. 5, no. 6, pp. 518–524.
  293. Dean, J.A., Lange’s Handbook of Chemistry, Knoxville (Tennessee): McGraw-Hill Inc., 1985.
  294. Birk, J.R. and Steunenberg, R.K., Chemical investigations of lithium-sulfur cells, in New Uses of Sulfur, American Chemical Society, 1975, pp. 186–202.
  295. Kaun, T.D., Nelson, P.A., and Redey, L., Electrochim. Acta, 1993, vol. 38, no. 9, pp. 1269–1287.
  296. Yamin, H., Gorenshtein, A., and Penciner, J., J. Electrochem. Soc., 1988, vol. 135, no. 5, pp. 1045–1048.
  297. Weast, R.C., Am. J. Med. Sci., 1969, vol. 257, no. 6, p. 423.
  298. Nelson, J., Misra, S., and Yang, Y., J. Am. Chem. Soc., 2012, vol. 134, no. 14, pp. 6337–6343.
  299. Xiong, S., Xie, K., and Diao, Y., J. Power Sources, 2013, vol. 236, pp. 181–187.
  300. Ryoo, R., Joo, S.H., and Kruk, M., Adv. Mater., 2001, vol. 13, no. 9, pp. 677–681.
  301. Song, J.X., Xu, T., and Gordin, M.L., Adv. Functional Mater., 2014, vol. 24, no. 9, pp. 1243–1250.
  302. Schipper, F., Vizintin, A., and Ren, J., ChemSusChem., 2015, vol. 8, no. 18, pp. 3077–3083.
  303. Tachikawa, N., Yamauchi, K., and Takashima, E., Chem. Commun., 2011, vol. 47, no. 28, pp. 8157–8159.
  304. Schuster, J., He, G., and Mandlmeier, B., Angewandte Chem. Int. Ed., 2012, vol. 51, no. 15, pp. 3591–3595.
  305. Wei, S., Zhang, H., and Huang, Y., En. Environ. Sci., 2011, vol. 4, no. 3, pp. 736–740.
  306. Chen, S.-R., Zhai, Y.-P., and Xu, G.-L., Electrochim. Acta, 2011, vol. 56, no. 26, pp. 9549–9555.
  307. Li, G.C., Li, G.R., and Ye, S.H., Adv. En. Mater., 2012, vol. 2, no. 10, pp. 1238–1245.
  308. Yang, Y., Yu, G., and Cha, J.J., ACS Nano, 2011, vol. 5, no. 11, pp. 9187–9193.
  309. Xin, S., Gu, L., and Zhao, N.-H., J. Am. Chem. Soc., 2012, vol. 134, no. 45, pp. 18510–18513.
  310. Hart, C.J., Cuisinier, M., and Liang, X., Chem. Commun., 2015, vol. 51, no. 12, pp. 2308–2311.
  311. Pang, Q., Kundu, D., and Cuisinier, M., Nat. Commun., 2014, no. 5, p. 4759.
  312. Markevich, E., Salitra, G., and Rosenman, A., Electrochem. Commun., 2015, vol. 60, pp. 42–46.
  313. Markevich, E., Salitra, G., and Rosenman, A., J. Mater. Chem. A, 2015, vol. 3, no. 39, pp. 19873–19883.
  314. Park, J.-W., Yamauchi, K., and Takashima, E., J. Phys. Chem. C, 2013, vol. 117, no. 9, pp. 4431–4440.
  315. Wang, J., Chew, S.Y., and Zhao, Z.W., Carbon, 2008, vol. 46, no. 2, pp. 229–235.
  316. Vizintin, A., Patel, M.U., and Genorio, B., ChemElectroChem., 2014, vol. 1, no. 6, pp. 1040–1045.
  317. Meini, S., Elazari, R., and Rosenman, A., J. Phys. Chem. Lett., 2014, vol. 5, no. 5, pp. 915–918.
  318. Suo, L., Hu, Y.-S., and Li, H., Nat. Commun., 2013, no. 4, p. 1481.
  319. SIONPower, http://www.sionpower.com/. 2016.
  320. Girishkumar, G., McCloskey, B., and Luntz, A.C., J. Phys. Chem. Lett., 2010, vol. 1, no. 14, pp. 2193–2203.
  321. Hardwick, L.J. and Bruce, P.G., Curr. Opinion Solid State Mater. Sci., 2012, vol. 16, no. 4, pp. 178–185.
  322. Johnson, L., Li, C., and Liu, Z., Nat. Chem., 2014, vol. 6, no. 12, pp. 1091–1099.
  323. Aurbach, D., Daroux, M., and Faguy, P., J. Electroanalyt. Chem. Interfacial Electrochem., 1991, vol. 297, no. 1, pp. 225–244.
  324. Mizuno, F., Nakanishi, S., and Kotani, Y., Electrochemistry, 2010, vol. 78, no. 5, pp. 403–405.
  325. McCloskey, B., Bethune, D., and Shelby, R., J. Phys. Chem. Lett., 2011, vol. 2, no. 10, pp. 1161–1166.
  326. Peng, Z., Freunberger, S.A., and Hardwick, L.J., Angewandte Chemie, 2011, vol. 123, no. 28, pp. 6475–6479.
  327. Giordani, V., Freunberger, S., and Bruce, P., Electrochem. Solid-State Lett., 2010, vol. 13, no. 12, pp. A180–A183.
  328. Freunberger, S.A., Chen, Y., and Drewett, N.E., Angewandte Chem. Int. Ed., 2011, vol. 50, no. 37, pp. 8609–8613.
  329. Kwak, W.-J., Hirshberg, D., and Sharon, D., J. Mater. Chem. A, 2015, vol. 3, no. 16, pp. 8855–8864.
  330. Black, R., Oh, S.H., and Lee, J.-H., J. Am. Chem. Soc., 2012, vol. 134, no. 6, pp. 2902–2905.
  331. Sharon, D., Hirsberg, D., and Afri, M., J. Phys. Chem. C, 2014, vol. 118, no. 28, pp. 15207–15213.