Статья
2021

The Effect of 15-Crown-5 and Benzo-15-Crown-5 on the Performance of Lithium Batteries in LiPF6 and LiN(CF3SO2)2 Electrolytes


A. A. Slesarenko A. A. Slesarenko , G. Z. Tulibaeva G. Z. Tulibaeva , G. R. Baymuratova G. R. Baymuratova , A. V. Yudina A. V. Yudina , A. F. Shestakov A. F. Shestakov , O. V. Yarmolenko O. V. Yarmolenko
Российский электрохимический журнал
https://doi.org/10.1134/S1023193521070119
Abstract / Full Text

The reversibility of electrode reactions in Li//LiFePO4 cells with two liquid electrolyte compositions modified by 15-crown-5 and benzo-15-crown-5 is tested. By cycling Li//LiFePO4 batteries, it is shown that crown ethers enhance the stability of discharge capacity and Coulomb efficiency in both electrolytes: 1 М LiPF6 in ethylene carbonate/dimethyl carbonate (1 : 1) and 1 M LiN(CF3SO2)2 in dioxolane/dimethoxyethane (2 : 1), which differ by their ability to form solid-electrolyte layers on the electrode surface. The energy of Li+-ion transport through the layer of crown ethers under study is modeled by quantum-chemical methods. The conclusions of quantum chemical calculations well agree with the results of electrochemical measurements.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia

    A. A. Slesarenko, G. Z. Tulibaeva, G. R. Baymuratova, A. V. Yudina, A. F. Shestakov & O. V. Yarmolenko

  • Moscow State University, 119991, Moscow, Russia

    A. F. Shestakov

References
  1. Aurbach, D., The role of surface films on electrodes in Li-ion batteries, in Advances in Lithium-Ion Batteries, van Schalkwijk, W.A. and Scrosati, B., Eds., New York: Kluwer Academic, 2002. p. 7.
  2. Lu, M., Cheng, H., and Yang, Y., A comparison of solid electrolyte interphase (SEI) on the artificial graphite anode of the aged and cycled commercial lithium ion cells, Electrochim. Acta, 2008, vol. 53, no. 9, p. 3539.
  3. Chen, G., Zhuang, G.V., Richardson, T.J., Liu, G., and Ross, P.N.J., Anodic polymerization of vinyl ethylene carbonate in Li-ion battery electrolyte, Electrochem. Solid-State Lett., 2005, vol. 8, no. 7, p. A344.
  4. Petibon, R., Henry, E.C., Burns, J.C., Sinha, N.N., and Dahn, J.R., Comparative study of vinyl ethylene carbonate (VEC) and vinylene carbonate (VC) in LiCoO2/graphite pouch cells using high precision coulometry and electrochemical impedance spectroscopy measurements on symmetric cells, J. Electrochem. Soc., 2014, vol. 161, no. 1, p. A66.
  5. Rezqita, A., Sauer, M., Foelske, A., Kronberger, H., and Trifonova, A., The effect of electrolyte additives on electrochemical performance of silicon/mesoporous carbon (Si/MC) for anode materials for lithium-ion batteries, Electrochim. Acta, 2017, vol. 247, p. 600.
  6. Nakahara, H., Yoon, S.Y., Piao, T., Mansfeld, F., and Nutt, S., Effect of an additive to polysiloxane-based electrolyte on passive film formation on a graphite electrode, J. Power Sources, 2006, vol. 158, no. 1, p. 591.
  7. Nakahara, H. and Nutt, S., Compounds in solid electrolyte interface (SEI) on carbonaceous material charged in siloxane-based electrolyte, J. Power Sources, 2006, vol. 160, no. 2, p. 1355.
  8. Aravindan, V. and Vickraman, P., A study on LiBOB-based nanocomposite gel polymer electrolytes (NCGPE) for lithium-ion batteries, Ionics, 2007, vol. 13, no. 4, p. 277.
  9. Xu, K., Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev., 2014, vol. 114, p. 11503.
  10. Yarmolenko, O.V., Yudina, A.V., and Ignatova, A.A., The state-of-the-art and prospects in the development of liquid electrolyte systems for lithium-ion batteries, Elektrokhim. Energ., 2016, vol. 16, no. 4, p. 152.
  11. Kennedy, T., Brandon, M., Laffir, F., and Ryan, K.M., Understanding the influence of electrolyte additives on the electrochemical performance and morphology evolution of silicon nanowire based lithium-ion battery anodes, J. Power Sources, 2017, vol. 359, p. 601.
  12. Madec, L., Petibon, R., Tasaki, K., Xia, J., Sun, J.-P., Hill, I.G., and Dahn, J.R., Mechanism of action of ethylene sulfite and vinylene carbonate electrolyte additives in LiNi1/3Mn1/3Co1/3O2/graphite pouch cells: electrochemical, GC–MS and XPS analysis, Phys. Chem. Chem. Phys., 2015, vol. 17, p. 27062.
  13. Aurbach, D., Markovsky, B., Salitra, G., Markevich, E., Talyossef, Y., Koltypin, M., Nazar, L., Ellis, B., and Kovacheva, D., Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries, J. Power Sources, 2007, vol. 165, no. 2, p. 491.
  14. Slesarenko, A.A., Baymuratova, G.R., Yakuschenko, I.K., Tulibaeva, G.Z., Shestakov, A.F., and Yarmolenko, O.V., 3-Pentadecyl-2,4-dioxo-16-crown-5 as a promising additive in electrolytes for chemical power sources, Mendeleev Commun., 2020, vol. 30, p.78.
  15. Younesi, R., Veith, G.M., Johansson, P., Edstrombe, K., and Veggea, T., Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S, Energy Environ. Sci., 2015, vol. 8, p. 1905.
  16. Bushkova, O.V., Yaroslavtseva, T.V., and Dobrovol’sky, Y.A., New lithium salts in electrolytes for lithium-ion batteries (Review), Russ. J. Electrochem., 2017, vol. 53, p. 677.]
  17. Perdew, P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, p. 3865.
  18. Laikov, D.N., Fast evaluation of density functional exchange-correlation terms using the expansion of the electron density in auxiliary basis sets, Chem. Phys. Lett., 1997, vol. 281, p. 151.
  19. Zhang, Q., Huang, S.-Z., Jin, J., Liu, J., Li, Y., Wang, H.-E., Chen, L.-H., Wang, B.-J., and Su, B.-L., Engineering 3D bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite for lithium storage with high rate capability and long cycle stability, Sci. Rep., 2016, vol. 6, p. 25942.
  20. Tulibaeva, G.Z., Yarmolenko, O.V., and Shestakov, A.F., Quantum chemical modeling of the absorption of crown ethers of different structures on surfaces of lithium and carbon, Russ. J. Phys. Chem. A, 2020, vol. 94, no. 5, p. 1002.
  21. Ignatova, A.A., Tulibaeva, G.Z., Yarmolenko, O.V., and Fateev, S.A., Electrolyte systems for primary lithium-fluorocarbon power Sources and their working efficiency in a wide temperature range, Russ. J. Electrochem., 2017, vol. 53, p. 292.
  22. Yarmolenko, O.V., Tulibaeva, G.Z., Khatmullina, K.G., Bogdanova, L.M., and Shestakov, A.F., Formation of highly conductive layers by crown ether molecules on the surface of a lithium anode at low temperatures, Mendeleev Commun., 2016, vol. 26, no.5, p. 407.