Статья
2020

Electrochemical Sensing System Based on MnFe2O4/rGO for Simultaneous Determination of Trace Amount Pb2+ and Cd2+ in Spice Samples


 Shahnaz Davoudi Shahnaz Davoudi , Mohammad Hadi Givianrad Mohammad Hadi Givianrad , Mohammad Saber-Tehrani Mohammad Saber-Tehrani , Parviz Aberoomand Azar Parviz Aberoomand Azar
Российский электрохимический журнал
https://doi.org/10.1134/S1023193520060051
Abstract / Full Text

This study describes the construction of a new electrochemical sensor and applies for simultaneous determination of Pb2+ and Cd2+. This sensor was prepared using a new nanocomposite base on MnFe2O4 and rGO. The linear ranges were obtained 0.04–3.8 µg L–1 for Pb2+ and 0.09–9.2 µg L–1 for Cd2+. The detection limit was calculated 0.012 µg L–1 for Pb2+ and 0.023 µg L–1 for Cd2+. This sensor was successfully applied for the determination of Pb2+ and Cd2+ ions in different kind of spices.

Author information
  • Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran

    Shahnaz Davoudi, Mohammad Hadi Givianrad, Mohammad Saber-Tehrani & Parviz Aberoomand Azar

References
  1. Sud, D., Mahajan, G., and Kaur, M.P., Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review, Bioresour. Technol., 2008, vol. 99, p. 6017.
  2. Chronopoulos, J., Haidouti, C., and Chronopoulou-Sereli, A., Variations in plant and soil lead and cadmium content in urban parks in Athens, Greece, Sci. Total. Environ., 1997, vol. 196, p. 91.
  3. Seiler, H., Sigel, A., and Sigel, H., Handbook on Metals in Clinical and Analytical Chemistry, CRC Press, 1994.
  4. Lane, T.W., Saito, M.A. and George, G.N., Biochemistry: a cadmium enzyme from a marine diatom, Nature, 2005, vol. 435, p. 42.
  5. Singh, R., Gautam, N., and Mishra, A., Heavy metals and living systems: an overview, Indian J. Pharmacol., 2011, vol. 43, p. 246.
  6. Shan, B., Cai, Y.Z., and Sun, M., Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents, J. Agric. Food Chem., 2005, vol. 53, p. 7749.
  7. Bagheri, H., Afkhami, A., and Saber-Tehrani, M., Preparation and characterization of magnetic nanocomposite of Schiff base/silica/magnetite as a preconcentration phase for the trace determination of heavy metal ions in water, food and biological samples using atomic absorption spectrometry, Talanta, 2012, vol. 97, p. 87.
  8. Cornard, J.-P., Caudron, A., and Merlin, J.-C., UV‑visible and synchronous fluorescence spectroscopic investigations of the complexation of Al(III) with caffeic acid, in aqueous low acidic medium, Polyhedron, 2006, vol. 25, p. 2215.
  9. Zhou, Q., Zhao, N., and Xiao, J., Preconcentration and sensitive methodology for the determination of cadmium in environmental waters using dispersive liquid–liquid microextraction prior to analysis by atomic fluorescence spectrometry, At.Spectrosc., 2011, vol. 32, no. 2, p. 62.
  10. Zeng, W., Chen, Y., and Cui, H., Single-column method of ion chromatography for the determination of common cations and some transition metals, J. Chromatogr. A, 2006, vol. 1118, p. 68.
  11. Arpadjan, S., Celik, G., and Taskesen, S., Arsenic, cadmium and lead in medicinal herbs and their fractionation, Food Chem. Toxicol., 2008, vol. 46, p. 2871.
  12. Zhao, L., Zhong, S., and Fang, K., Determination of cadmium(II), cobalt(II), nickel(II), lead(II), zinc(II), and copper(II) in water samples using dual-cloud point extraction and inductively coupled plasma emission spectrometry, J. Hazard Mater., 2012, vol. 239, p. 206.
  13. Shams, E. and Torabi, R., Determination of nanomolar concentrations of cadmium by anodic-stripping voltammetry at a carbon paste electrode modified with zirconium phosphated amorphous silica, Sens. Actuators, 2006, vol. 117, p. 86.
  14. Bagheri, H., Afkhami, A., and Khoshsafar, H., Simultaneous electrochemical determination of heavy metals using a triphenylphosphine/MWCNTs composite carbon ionic liquid electrode, Sens. Actuators, 2013, vol. 186, p. 451.
  15. Bagheri, H., Afkhami, A., and Khoshsafar, H., Simultaneous electrochemical sensing of thallium, lead and mercury using a novel ionic liquid/graphene modified electrode, Anal. Chim. Acta, 2015, vol. 870, p. 56.
  16. Afkhami, A., Khoshsafar, H., and Bagheri, H., Facile simultaneous electrochemical determination of codeine and acetaminophen in pharmaceutical samples and biological fluids by graphene–CoFe2O4 nancomposite modified carbon paste electrode, Sens. Actuators B-Chem., 2014, vol. 203, p. 909.
  17. Bagheri, H., Shirzadmehr, A., and Rezaei, M., Determination of copper ions in foodstuff products with a newly modified potentiometric carbon paste electrode based on a novel nano-sensing layer, Ionics, 2016, vol. 22, no. 7, p. 1.
  18. Guo, H.-L., Wang, X.-F., and Qian, Q.-Y., A green approach to the synthesis of graphene nanosheets, ACS Nano, 2009, vol. 3, p. 2653.
  19. Afkhami, A., Khoshsafar, H., and Bagheri, H., Preparation of NiFe2O4/graphene nanocomposite and its application as a modifier for the fabrication of an electrochemical sensor for the simultaneous determination of tramadol and acetaminophen, Anal. Chim. Acta, 2014, vol. 831, p. 50.
  20. Zeinali, H., Bagheri, H., and Monsef-Khoshhesab, Z., Nanomolar simultaneous determination of tryptophan and melatonin by a new ionic liquid carbon paste electrode modified with SnO2–Co3O4@rGO nanocomposite, Mater. Sci. Eng., C, 2017, vol. 71, pp. 386–394.
  21. Yu, Y., Chen, C.H., and Shi, Y., A tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries, Adv. Mater., 2007, vol. 19, p. 993.
  22. Kotutha, I., Swatsitang, E., and Meewassana, W., One-pot hydrothermal synthesis, characterization, and electrochemical properties of rGO/MnFe2O4 nanocomposites, Jpn. J. Appl. Phys., 2015, vol. 54, no. 6S1, p. 06FH10.
  23. Vignesh, R.H., Sankar, K.V., and Amaresh, S., Synthesis and characterization of MnFe2O4 nanoparticles for impedometric ammonia gas sensor, Sens. Actuators B-Chem., 2015, vol. 220, p. 50.
  24. Kumar, S., Nair, R.R., and Pillai, P.B., Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water, ACS Appl. Mater. Int., 2014, vol. 6, p. 17426.
  25. Topkaya, R., Kurtan, U., and Baykal, A., Polyvinylpyrrolidone (PVP)/MnFe2O4 nanocomposite: sol–gel autocombustion synthesis and its magnetic characterization, Ceram. Int., 2013, vol. 39, p. 5651.
  26. Chang, J., Zhou, G., Christensen, E.R., Heideman, R., and Chen, J., Graphene-based sensors for detection of heavy metals in water: a review, Anal. Bioanal. Chem., 2014, vol. 406, p. 3957.
  27. Zhou, S., Han, X., Fan, H., and Liu, Y., Electrochemical sensing toward trace As(III) based on mesoporous MnFe2O4/Au hybrid nanospheres modified glass carbon electrode, Sensors, 2016, vol. 16, p. 935.
  28. Kardar, Z.S., Beyki, M.H., and Shemirani, F., Takovite-aluminosilicate@MnFe2O4 nanocomposite, a novel magnetic adsorbent for efficient preconcentration of lead ions in food samples, Food Chem., 2016, vol. 209, p. 241.
  29. Zhou, S.F., Wang, J.J., Gan, L., Han, X.J., Fan, H.L., Mei, L.Y., Huang, J., and Liu, Y.Q., Individual and simultaneous electrochemical detection toward heavy metal ions based on L-cysteine modified mesoporous MnFe2O4 nanocrystal clusters, J. Alloys. Compd., 2017, vol. 721, p. 492.
  30. Zhao, Q., Chai, Y., Yuan, R., and Luo, J., Square wave anodic stripping voltammetry determination of lead based on the Hg(II) immobilized graphene oxide composite film as an enhanced sensing platform, Sens. Actuators B-Chem., 2013, vol. 178, p. 379.
  31. Xiong, S., Yang, B., Cai, D., Qiu, G., and Wu, Z., Individual and simultaneous stripping voltammetric and mutual interference analysis of Cd2, Pb2‏ and Hg2‏ with reduced graphene Oxide–Fe3O4 nanocomposites, Electrochim. Acta, 2015, vol. 185, p. 52.
  32. Zhou, S.F., Han, X.J., Fan, H.L., Huang, J., and Liu, Y.Q., Enhanced electrochemical performance for sensing Pb(II) based on graphene oxide incorporated mesoporous MnFe2O4 nanocomposites, J. Alloys. Compd., 2018, vol. 747, p. 447.
  33. Hummers, W.S. and Offeman, R.E., Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, vol. 80, p. 1339.
  34. Wu, K., Hu, G., and Cao, Y., Facile and green synthesis of MnFe2O4/reduced graphene oxide nanocomposite as anode materials for Li-ion batteries, Mater. Lett., 2015, vol. 161, p. 178.
  35. Ensafi, A.A., Khayamian, T., and Khaloo, S.S., Simultaneous determination of trace amounts of vanadium and molybdenum in water and foodstuff samples using adsorptive cathodic stripping voltammetry, Int. J. Food Sci. Tech., 2008, vol. 43, p. 416.
  36. Zhang, X.-J., Wang, G.-S., and Cao, W.-Q., Enhanced microwave absorption property of reduced graphene oxide (RGO)–MnFe2O4 nanocomposites and polyvinylidene fluoride, ACS Appl. Mater. Int., 2014, vol. 6, p. 7471.
  37. Ping, J., Wu, J., and Ying, Y., Evaluation of trace heavy metal levels in soil samples using an ionic liquid modified carbon paste electrode, J. Agric. Food Chem., 2011, vol. 59, p. 4418.
  38. Svobodová, E., Baldrianová, L., and Hocevar, S.B., Electrochemical stripping analysis of selected heavy metals at antimony trioxide-modified carbon paste electrode, Int. J. Electrochem. Sci., 2012, vol. 7, p. 197.
  39. Zhang, P., Dong, S., Gu, G., and Huang, T., Simultaneous determination of Cd2+, Pb2+, Cu2+, and Hg2+ at a carbon paste electrode modified with ionic liquid-functionalized ordered mesoporous silica, B Kor.Chem. Soc., 2010, vol. 31, p. 2949.
  40. Xiao, L., Wang, B., and Ji, L., An efficient electrochemical sensor based on three-dimensionally interconnected mesoporous graphene framework for simultaneous determination of Cd(II) and Pb(II), Electrochim. Acta, 2016, vol. 222, p. 1371.
  41. Dai, H., Wang, N., and Wang, D., An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd(II) and Pb(II), Chem. Eng. J., 2016, vol. 299, p. 150.
  42. Guo, Z., Li, D.-d., and Luo, X.-k., Simultaneous determination of trace Cd(II), Pb(II) and Cu(II) by differential pulse anodic stripping voltammetry using a reduced graphene oxide-chitosan/poly-l-lysine nanocomposite modified glassy carbon electrode, J. Colloid Interface Sci., 2017, vol. 490, p. 11.
  43. Zhao, G., Yin, Y., and Wang, H., Sensitive stripping voltammetric determination of Cd(II) and Pb(II) by a Bi/multi-walled carbon nanotube-emeraldine base polyaniline-Nafion composite modified glassy carbon electrode, Electrochim. Acta, 2016, vol. 220, p. 267.
  44. Pérez-Ràfols, C., Serrano, N., and Manuel Díaz-Cruz, J., Penicillamine-modified sensor for the voltammetric determination of Cd(II) and Pb(II) ions in natural samples, Talanta, 2015, vol. 144, p. 569.