Examples



mdbootstrap.com



 
Статья
2017

Electrochemical machining of titanium. Review


A. D. DavydovA. D. Davydov, T. B. KabanovaT. B. Kabanova, V. M. VolginV. M. Volgin
Российский электрохимический журнал
https://doi.org/10.1134/S102319351709004X
Abstract / Full Text

The problems of overcoming titanium passivity that hampers reaching high rates of its anodic dissolution, the optimization of electrolyte composition, and the mode of electrochemical machining (ECM) are considered. The anodic potentials of machining and the current efficiencies for titanium ionization reaction in relation to the anionic composition of electrolyte and the nature of solvent are presented. Some details of the mechanism of high-rate anodic dissolution of metal, which determine the main results of ECM, are considered. The examples of techniques of ECM of titanium and their biomedical and aircraft industry applications are presented.

Author information
  • Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow, 119071, RussiaA. D. Davydov & T. B. Kabanova
  • Tula State University, pr. Lenina 92, Tula, 300012, RussiaV. M. Volgin
References
  1. McGeough, J.A., Principles of electrochemical machining. London: Chapman and Hall, 1974, p. 255.
  2. Electrochemical machining, De Barr, A.E. and Oliver, D.A., Eds., L.: Macdonald, 1968.
  3. Wilson, J.F., Practice and theory of electrochemical machining, New York: Wiley, 1971.
  4. Sedykin, F.V., Razmernaya elektrokhimicheskaya obrabotka detalei mashin (Electrochemical Machining of Machine Parts), Moscow: Mashinostroenie, 1976.
  5. Dikusar, A.I., Engel’gardt, G.R., Petrenko, V.I., and Petrov, Yu.N., Elektrodnye protsessy i protsessy perenosa pri elektrokhimicheskoi razmernoi obrabotke metallov (Electrode Processes and Transport Processes in Electrochemical Machining of Metals), Chisinau: Shtiintsa, 1983.
  6. Rumyantsev, E. and Davydov, A.D., Electrochemical Machining of Metals, Moscow: Mir, 1989.
  7. Shmanev, V.A., Filimoshin, V.G., Karimov, A.Kh., Petrov, B.I., and Pronichev, N.D., Tekhnologiya elektrokhimicheskoi obrabotki detalei aviadvigatelei (Technology of Electrochemical Machining of Aircraft Engine Parts), Moscow: Mashinostroenie, 1986.
  8. Davydov, A.D. and Kozak, E., Vysokoskorostnoe elektrokhimicheskoe formoobrazovanie (High-Rate Electrochemical Shaping), Moscow: Nauka, 1990.
  9. Dugdale, I. and Cotton, J.B., The anodic polarization of titanium in halide solutions, Corros. Sci., 1964, vol. 4, p. 397.
  10. Beck, T.R., Pitting of titanium. I. Titanium-foil experiments, J. Electrochem. Soc., 1973, vol. 120, p. 1310.
  11. Petit, J.A., Kondro, B., and Dabosi, F., Ion beam analysis investigation of pit nucleation on titanium in bromide media, Corrosion, 1980, vol. 36, p. 145.
  12. Bannard, J., On the electrochemical machining of some titanium alloys in bromide electrolytes, J. Appl. Electrochem., 1976, vol. 6, no. 6, p. 477.
  13. Abd Rabbo, M.F. and Boden, P.J., Development of electrolytes for the electrochemical machining of titanium. I. Electrochemistry in static solutions, Brit. Corros. J., 1979, vol. 14, no. 4, p. 240.
  14. Abd Rabbo, M.F. and Boden, P.J., Development of electrolytes for the electrochemical machining of titanium. II. Electrochemical studies in flowing solutions, Brit. Corros. J., 1979, vol. 14, no. 4, p. 246.
  15. Landolt, D., Chauvy, P.-F., and Zinger, O., Electrochemical micromachining, polishing and surface structuring of metals: fundamental aspects and new developments, Electrochim. Acta, 2003, vol. 48, p. 3185.
  16. Madore, C. and Landolt, D., Electrochemical micromachining of controlled topographies on titanium for bioloogical applications, J. Micromech. Microeng., 1997, vol. 7, p. 270.
  17. Davydov, A.D., Kashcheev, V.D., and Kabanov, B.N., Effect of electrolyte flow on the electrochemical machining of metals, Elektron. Obrab. Mater., 1969, no. 6, p. 13.
  18. Rolsten, R.F., Iodide Metals and Metal Iodides, NewYork: Wiley, 1961.
  19. Davydov, A.D., Kazarinov, V.E., Kashcheev, V.D., and Kamkin, A.N., Action of bromide ions on metals during anodic polarization, Soviet Electrochem., 1971, vol. 7, p. 431.
  20. Casillas, N., Charlebois, S., Smyrl, W.H., and White, H.S., Pitting corrosion of titanium, J. Electrochem. Soc., 1994, vol. 141, p. 636.
  21. Garfias-Mesias, L.F., Alodan, M., James, P.I., and Smyrl, W.H., Determination of precursor sites for pitting corrosion of polycrystalline titanium by using different techniques, J. Electrochem. Soc., 1998, vol. 145, p. 2005.
  22. Huo, S. and Meng, X., The states of bromide on titanium surface prior to pit initiation, Corros. Sci., 1990, vol. 31, p. 281.
  23. Davydov, A.D., High-rate cathodic and anodic electrochemical shaping, Itogi Nauki Tekh., Ser.: Elektrokhim., Moscow: VINITI, 1989, vol. 29, p. 38.
  24. Saushkin, B.P., Petrov, Yu.N., Nistryan, A.Z., and Maslov, A.V., Elektrokhimicheskaya obrabotka izdelii iz titanovykh splavov (Electrochemical Machining of Parts Made of Titanium Alloys), Chisinau: Shtiintsa, 1988.
  25. Kozak, J. and Davydov, A.D., Some problems of surface roughness in electrochemical machining (ECM), Inz. Powierzchni, 2015, no. 1, p. 19.
  26. Mirzoev, R.A. and Davydov, A.D., in Anodnye protsessy elektrokhimicheskoi i khimicheskoi obrabotki metallov (Anodic Processes in Electrochemical and Chemical Treatment of Metals), St. Petersburg: Politekhn. Univ., 2013.
  27. Davydov, A.D., Volgin, V.M., and Lubimov, V.V. Electrochemical machining of metals: fundamentals of electrochemical shaping, Russian J. Electrochem., 2004, vol. 40, p. 1230.
  28. Davydov, A.D. and Zemskova, O.V., Anodic behavior of titanium in sodium iodide solution. Anionic anodic activation, Soviet Electrochem., 1986, vol. 22, p. 982.
  29. Davydov, A.D. and Zemskova, O.V., Anodic behavior of titanium in sodium chloride solutions after the destruction of the oxide film, Soviet Electrochem., 1985, vol. 21, p. 463.
  30. Davydov, A.D. and Zemskova, O.V., Causes of the anodic activation of titanium in sodium chloride solutions, Soviet Electrochem., 1984, vol. 20, p. 678.
  31. Nishimura, R. and Kudo, K., Anodic oxidation and kinetics of titanium in 1 M chloride solution, Corros. Sci., 1982, vol. 22, p. 637.
  32. Dikusar, A.I., Davydov, A.D., Molin, A.N., and Engel’gardt, G.R., Development of thermokinetic instability during anionic anodic activation of titanium, Soviet Electrochem., 1987, vol. 23, p. 905.
  33. Davydov, A.D., Mirzoev, R.A., and Kashcheev, V.D., Anodic activation of titanium during electrochemical machining, in Elektrofizich. i elektrokhim. metody obrabotki materialov (Electrophysical and Electrochemical methods of Machining), Moscow: MDNTP, 1972, p. 13.
  34. Davydov, A.D., Breakdown of the passivity of rectifying metals with aggressive ions. Protection of Metals, 2001, vol. 37, p. 420.
  35. Archibald, L.C., Internal stresses formed during the anodic oxidation of titanium, Electrochim. Acta, 1977, vol. 22, p. 657.
  36. DiQuarto, F., Doblhofer, K., and Gerischer, H., Instability of anodically formed TiO2 layers, Electrochim. Acta, 1978, vol. 23, p. 195.
  37. Jouve, G., Politi, A., Lacombe, P., and Vuye, G., Etude de quelques facteurs determinant la croissance et la cristallisation des films anodiques sur le titane en milieu acide, J. Less-Common Met., 1978, vol. 50, p. 175.
  38. Faizullin, F.F. and Faizullina, R.F., On anodic oxidation of titanium in aqueous salt solutions, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1973, vol. 16, p. 1026.
  39. Chernenko, E.K., Yanov, L.Ya., and Chernenko, V.I., Properties of oxide films formed by alternating voltage on titanium alloy VT-1, Elektrokhimiya, 1971, vol. 7, p. 1374.
  40. Hefny, M.M., Gad, AllanA.G., Salih, S.A., and El-Basiouny, M.S., Nature of the corrosion reaction at the anodic oxide film on titanium in HCl solutions, Corrosion, 1984, vol. 40, p. 245.
  41. Chen, C.M., Beck, F.H., and Fontana, M.G., Stress corrosion cracking of Ti-8Al-lMo-lV alloy: electrochemical behavior in aqueous solutions, Corrosion, 1970, vol. 26, p. 135.
  42. El-Basiouny, M.S. and Mazhar, A.A., Electrochemical behavior of passive layers on titanium, Corrosion, 1982, vol. 38, p. 237.
  43. McAleer, J.F. and Peter, L.M., Instability of anodic oxide, J. Electrochem. Soc., 1982, vol. 129, p. 1252.
  44. Mirzoev, R.A., Davydov, A.D., and Kabanov, B.N., Electrochemical dissolution of metals in a postpassive state, Soviet Electrochem., 1983, vol. 19, p. 1269.
  45. Sedykin, F.V., Pupkov, E.I., Kornilov, E.N., and Izotov, A.F., Study of machinability of VT14 alloy by the method of electrochemical machining, Elektrofiz. Elektrokhim. Metody Obrab., 1971, no. 1, p. 8.
  46. Volkov, V.I., Nevskii, O.I., Rumyantsev, E.M., and Grishina, E.P., Effect of electrolyte composition on accuracy of electrochemical shaping of VT1-0 titanium, Elektron. Obrab. Mater., 1987, no. 3, p. 83.
  47. Shmanev, V.A., Pronichev, N.D., and Senina, O.A., Issledovanie sostava prianodnogo sloya v protsesse elektrokhimicheskoi razmernoi obrabotki titanovykh splavov, in Elektrokhimicheskaya obrabotka (Electrochemical Machining), Kuibyshev: Kuib. Aviats. Inst., 1976, pp. 9–16.
  48. Walther, B., Schilm, J., Michaelis, A., and Lohrengel, M.M., Electrochemical dissolution of hard metal alloys, Electrochim. Acta, 2007, vol. 52, p. 7732.
  49. Davydov, A.D., Kamkin, A.N. and Zemskova, O.V., Influence of an oxide film on the anodic anionic activation of metals, Soviet Electrochem. 1982, vol. 18, p. 1216.
  50. Ohtsuka, T., Masuda, M., and Sato, N., Ellipsometric study of anodic oxide films on titanium in hydrochloric acid, sulfuric acid, and phosphate solutions, J. Electrochem. Soc., 1985, vol. 132, p. 787.
  51. Ohtsuka, T., Guo, J., and Sato, N., Raman spectra of the anodic oxide film on titanium in acidic sulfate and neutral phosphate solutions, J. Electrochem. Soc., 1986, vol. 133, p. 2473.
  52. Kashcheev, V.D., Klopova, S.V., and Davydov, A.D., Peculiarities of initial period of electrochemical machining of titanium alloys, Elektron. Obrab. Mater., 1969, no. 1, p. 12.
  53. Armstrong, R.D. and Firman, R.E., Impedance of titanium in the active-passive transition, J. Electroanal. Chem., 1972, vol. 34, p. 391.
  54. Weinmann, M., Stolpe, M., Weber, O., Busch, R., and Natter, H., Electrochemical dissolution behaviour of Ti90Al6V4 and Ti60Al40 used for ECM applications, J. Solid State Electrochem., 2015, vol. 19, p. 485.
  55. Xu, Z., Chen, X., Zhou, Z., Qin, P., and Zhu, D., Electrochemical machining of high-temperature titanium alloy Ti60, Procedia. CIRP, 2016, vol. 42, p. 125.
  56. Baehre, D., Ernst, A., Weisshaar, K., Natter, H., Stolpe, M., and Busch, R., Electrochemical dissolution behavior of titanium and titanium-based alloys in different electrolytes, Procedia CIRP, 2016, vol. 42, p. 137.
  57. Chen, X., Qu, N., and Hou, Z., Electrochemical micromachining of micro-dimple arrays on the surface of Ti–6Al–4V with NaNO3 electrolyte, Int. J. Adv. Manuf. Technol., 2016, vol. 88, no. 1, p. 565.
  58. Li, H., Wang, G., Qu, N., and Zhu, D., Throughmask electrochemical machining of a large-area hole array in a serpentine flow channel, Int. J. Adv. Manuf. Technol., 2017, vol. 89, no. 1, p. 933.
  59. Wang, G.Q., Li, H.S., Qu, N.S., and Zhu, D., Investigation of the hole-formation process during doublesided through-mask electrochemical machining, J. Mater. Process. Technol., 2016, vol. 234, p. 95.
  60. Davydov, A.D., Kiriyak, E.N., Kashcheev, V.D., and Kabanov, B.N., Study of anodic dissolution of titanium alloys in salt solutions. Elektron. Obrab. Mater., 1979, no. 6, p. 12.
  61. Yu, C.Y., Yang, Y.S., and Cheng, C.K., The relation between copying accuracy and electrolytes of electrochemical machining for titanium alloys, Annals CIRP, 1981, vol. 30, p. 123.
  62. Davydov, A.D. and Kashcheev, V.D., Anodic behavior of metals in electrochemical machining, Itogi Nauki Tekhn.: Ser. Elektrokhim., Moscow: VINITI, 1974, vol. 9, p. 154.
  63. Petrov, Yu.N., Nistryan, A.Z., and Saushkin, B.P., Study of anodic behavior of titanium alloys in ECM. I. Nitrate, chlorate, and perchlorate solutions, Elektron. Obrab. Mater., 1983, no. 1, p. 11.
  64. Volkov, Yu.S., Monina, M.A., and Moroz, I.I., On problem of titanium machinability, Elektron. Obrab. Mater., 1972, no. 3, p. 11.
  65. Davydov, A.D., Kashcheev, V.D., Postanogov, V.Kh., Evgen’eva, T.I., Zemskova, O.V., Zverintseva, E.O., and Girshberg, M.D., An electrolyte for electrochemical machining of titanium alloy work to size with high precision, Sov. Surf. Eng. Appl. Electrochem., 1985, no. 2, p. 103.
  66. Froment, M., Sur l’application de la loi de faraday a l’etude de la dissolution anodiqe des metaux, Corros. Anticorros., 1959, vol. 7, p. 98.
  67. Petrov, Yu.N., Nistryan, A.Z., and Saushkin, B.P., Study of anodic behavior of titanium alloys in ECM. II. Two-component aqueous solutions of salts, Elektron. Obrab. Mater., 1983, no. 6, p. 18.
  68. Grishina, E.P., Nevskii, O.I., Rumyantsev, E.M., and Volkov, V.I., Study of anodic behavior of titanium and titanium alloy TS5 in mixed nitrate—chloride solutions, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 1981, vol. 24, p. 1512.
  69. Dikusar, A.I. and Senina, O.A., On reduction of nitrate ions in anodic dissolution of titanium in nitrates and nitrate-chloride solutions, Elektron. Obrab. Mater., 1981, no. 5, p. 64.
  70. Shekun, I.F., Dikusar, A.I., Molin, A.N., and Davydov, A.D., Possible mechanism for lowering the effective valence of titanium during its anodic dissolution in chloride-nitrate solutions. Soviet Electrochem., 1990, vol. 26, p. 675.
  71. Dikusar, A.I., Senina, O.A., Petrov, Yu.N., and Shmanev, V.A., On mechanism of hydrogen charging of titanium alloys in ECM, Elektron. Obrab. Mater., 1982, no. 6, p. 12.
  72. Shekun, I.F., Dikusar, A.I., Molin, A.N., and Davydov, A.D., Investigation of the anodic dissolution products of titanium in chloride-nitrate solutions at high current densities. Soviet Electrochem., 1990, vol. 26, p. 85.
  73. Rumyantsev, E.M., Nevskii, O.I., Volkov, V.I., and Grishina, E.P., Some regularities of titanium dissolution under potentiostatic conditions, Elektron. Obrab. Mater., 1984, no. 1, p. 67.
  74. Lyubimov, V.V., Polutin, Yu.V., Borodin, V.V., Eliseev, A.A., Lutskov, Yu.I., Nikiforov, A.V., Sotov, I.N., Sundukov, V.K., Shcherbina, V.I., and Pokrovskii, Yu.Yu., Tekhnologiya i ekonomika elektrokhimicheskoi obrabotki (Technology and Economics of Electrochemical Machining), Moscow: Mashinostroenie, 1980.
  75. Potapova, N.I., Sirazh, Yu.A., Shmanev, V.A., and Golovachev, V.A., Study of machinability of titanium alloys of VT8 types by electrochemical machining, in Trudy Kuibyshev. aviats. inst. (Proc. Kuibishev Aviation Inst.), 1968, no. 33, p. 23.
  76. Petrov, Yu.N., Maslov, A.V., and Saushkin, B.P., Study of anodic behavior of titanium alloys in ECM. III. Non-aqueous and organo-aqueous solutions of salts, Elektron. Obrab. Mater., 1986, no. 1, p. 7.
  77. Bannard, J.E., Treble, J.R., and Brook, P.A., The electrochemical machining of titanium in non-aqueous electrolytes, Proc. Int. Symp. Electromach., Wolfsberg, 1977, pp. 39–42.
  78. Mathieu, J.B. and Landolt, D., Electropolishing of titanium in perchloric acid-acetic acid solution. II. Polarization behavior and stoichiometry, J. Electrochem. Soc., 1978, vol. 125, p. 1044.
  79. Rumyantsev, E.M. and Lilin, S.A., ECM in nonaqueous solutions: an effective method of machining of metals, Zh. Vses. Khim. Obshch. Im. D.I. Mendeleeva, 1984, vol. 29, p. 80.
  80. Saushkin, B.P., Maslov, A.V., and Petrov, Yu.N., Problems of technological application of non-aqueous and organo-aqueous electrolytes. I. Productivity and power capacity, Elektron. Obrab. Mater., 1987, no. 2, p. 8.
  81. Saushkin, B.P., Petrov, Yu.N., Maslov, A.V., and Kolpakova, N.A.,., Problems of technological application of non-aqueous and organo-aqueous electrolytes. II. Quality of surface layer, Elektron. Obrab. Mater., 1987, no. 3, p. 15.
  82. Mansfeld, F., The effect of water on passivity and pitting of titanium in solutions of methanol and hydrogen chloride, J. Electrochem. Soc., 1971, vol. 118, p. 1412.
  83. Meshcherikova, I.D., Kashcheeva, T.P., and Rutkovskii, M.L., Behavior of titanium in ethanol—aqueous solutions of hydrogen chloride, Zashch. Met., 1970, vol. 6, p. 286.
  84. Tsinman, A.I., Kuzub, V.S., and Katrevich, A.N., Effect of water and nature of electrolyte on andic activation of titanium in methanol solutions, Elektrokhimiya, 1966, vol. 2, p. 557.
  85. Fushimi, K., Kondo, H., and Konno, H., Anodic dissolution of titanium in chloride-containing ethylene glycol solution, Electrochim. Acta, 2009, vol. 55, p. 258.
  86. Fushimi, K. and Habazaki, H., Anodic dissolution of titanium in NaCl-containing ethylene glycol, Electrochim. Acta, 2008, vol. 53, p. 3371.
  87. Piotrowski, O., Madore, C., and Landolt, D., The mechanism of electropolishing of titanium in methanol–sulfuric acid electrolytes, J. Electrochem. Soc., 1998, vol. 145, p. 2362.
  88. Awez Mohammad, A., Arnott, Z.L., Wang, Y., and Kruse, P., Note: Benign and reproducible preparation of titanium tips, Rev. Sci. Instrum., 2014, vol. 85, 026113 (1–3).
  89. Sjöström, T. and Su, B., Micropatterning of titanium surfaces using electrochemical micromachining with an ethylene glycol electrolyte, Mater. Lett., 2011, vol. 65, p. 3489.
  90. Bannard, J., Effect of surface finish obtained by electrochemical machining on the fatigue life of some titanium alloys, J. Appl. Electrochem., 1974, vol. 4, p. 229.
  91. Saushkin, B.P., Nistryan, A.Z., Groza, I.A., and Burchakov, Sh.A., Electrochemical dissolution of titanium alloys in chloride electrolytes, in Sovremennye problemy elektrokhimicheskogo formoobrazovaniya (Modern Problems of Electrochemical Shaping), Chisinau: Shtiintsa, 1978, pp. 40–48.
  92. Clifton, D., Mount, A.R., Jardine, D.J., and Roth, R., Electrochemical machining of gamma titanium aluminide intermetallics, J. Mater. Process. Tech., 2001, vol. 108, p. 338.
  93. Davydov, A.D., Klepikov, R.P., and Moroz, I.I., Electrochemical machining of titanium alloys with activating anodic pulses, Elektron. Obrab. Mater., 1980, no. 6, p. 8.
  94. Shmanev, V.A. and Pronichev, N.D., Surface finish of titanium alloys in pulse ECM, in Elektrokhimicheskaya obrabotka (Electrochemical Machining), Kuibyshev: Trudy Kuib. Aviats. Inst., 1976, no. 63, pp. 3–9.
  95. Wei, B., Kozak, J., and Rajurkar, K.P., Study of pulse electrochemical machining of titanium alloy, Proc. IV Conf. EM’94, Electromachining. Bydgoszcz, 1994, II-T, p. 123.
  96. Lee, E.-S., Shin, T.-H., Kim, B.-K., and Baek, S.Y., Investigation of short pulse electrochemical machining for groove process on Ni-Ti shape memory alloy, Int. J. Precision Eng. Manufact., 2010, vol. 11, p. 113.
  97. Schuster, R., Kirchner, V., Allongue, P., and Ertl, G., Electrochemical micromachining, Science, 2000, vol. 289, p. 98.
  98. Schuster, R., Electrochemical microstructuring with short voltage pulses, ChemPhysChem., 2007, vol. 8, p. 34.
  99. Kock, M., Kirchner, V., and Schuster, R., Electrochemical micromachining with ultrashort voltage pulses—a versatile method with lithographical precision, Electrochim. Acta, 2003, vol. 48, p. 3213.
  100. Speidel, A., Mitchell-Smith, J., Walsh, D.A., Hirsch, M., and Clare, A., Electrolyte jet machining of titanium alloys using novel electrolyte solutions, Procedia CIRP, 2016, vol. 42, p. 367.
  101. Mitchell-Smith, J. and Clare, A.T., Electrochemical jet machining of titanium: overcoming passivation layers with ultrasonic assistance, Procedia CIRP, 2016, vol. 42, p. 379.
  102. Pajak, P.T., Desilva, A.K.M., Harrison, D.K., and Mcgeough, J.A., Precision and efficiency of laser assisted jet electrochemical machining, Precis. Eng., 2006, vol. 30, p. 288.
  103. Lu, X. and Leng, Y., Electrochemical micromachining of titanium surfaces for biomedical applications, J. Mater. Proc. Technol., 2005, vol. 169, p. 173.
  104. Qu, N., Fang, X., Li, W., Zeng, Y., and Zhu, D., Wire electrochemical machining with axial electrolyte flushing for titanium alloy, Chin. J. Aeronaut., 2013, vol. 26, p. 224.
  105. Qu, N.S., Fang, X.L., Zhang, Y.D., and Zhu, D., Enhancement of surface roughness in electrochemical machining of Ti6Al4V by pulsating electrolyte, Int. J. Adv. Manuf. Technol., 2013, vol. 69, p. 2703.
  106. Dhobe, S.D., Doloi, B., and Bhattacharyya, B., Surface characteristics of ECMed titanium work samples for biomedical applications, Int. J. Adv. Manuf. Technol., 2011, vol. 55, p. 177.
  107. Buhlert, M., Electropolishing and electrochemical structuring of titanium, Proc. Int. Symp. on Electrochemical Machining Technology INSECT, Fraunhofer, 2009, p. 65.
  108. Madore, C., Piotrowski, O., and Landolt, D., Through-mask electrochemical micromachining of titanium, J. Electrochem. Soc., 1999, vol. 146, p. 2526.
  109. Chauvy, P.-F., Hoffmann, P., and Landolt, D., Applications of laser lithography on oxide film to titanium micromachining, Appl. Surf. Sci., 2003, vols. 208–209, p. 165.
  110. Kern, P., Veh, J., and Michleh, J., New developments in through-mask electrochemical micromachining of titanium, J. Micromech. Microeng., 2007, vol. 17, p. 1168.
  111. Ferri, Y., Piotrowski, O., Chauvy, P.-F., Madore, C., and Landolt, D., Two-level electrochemical micromachining of titanium for device fabrication, J. Micromech. Microeng., 2001, vol. 11, p. 522.
  112. Klocke, F., Zeis, M., and Klink, A., Technological and economical capabilities of manufacturing titanium- and nickel-based alloys via electrochemical machining (ECM), Key Eng. Mater., 2012, vols. 504–506, p. 1237.
  113. Bellows, G. and Kohls, J.B., Drilling without drills, American Machinist. Special Report 743, 1982, vol. 126, p. 173.