The Electrochemical Reduction of Azines Studied by Cyclic Voltammetry

N. V. Zolotareva N. V. Zolotareva , M. D. Grishin M. D. Grishin , Yu. S. Panova Yu. S. Panova , V. V. Sushchev V. V. Sushchev , A. N. Kornev A. N. Kornev
Российский электрохимический журнал
Abstract / Full Text

The electrochemical reduction of a series of azines is studied by cyclic voltammetry. The reduction of azines of 1-tetralone, propiophenone, phenylbenzylketone, acetophenone, m-chloroacetophenone, and p-methoxyacetophenone proceeds in two stages: the reversible formation of a radical anion in the first stage and the irreversible formation of a dianion in the second rate-determining stage. Azines of 2-indanone and dibenzylketone demonstrate a single peak of the reduction to dianione (irreversible). The diffusion coefficients, the transfer coefficients, the electron transfer rate constants, and the Matsuda–Ayabe criteria of reversibility are determined for all these azines.

Author information
  • Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia

    N. V. Zolotareva, M. D. Grishin, Yu. S. Panova, V. V. Sushchev & A. N. Kornev

  1. Sek, D., Siwy, M., Bijak, K., Grucela-Zajac, M., Malecki, G., Smolarek, K., Bujak, L., Mackowski, S., and Schab-Balcerzak, E., Comparative studies of structural, thermal, optical, and electrochemical properties of azines with different end groups with their azomethine analogues toward application in (opto)electronics, J. Phys. Chem. A., 2013, vol. 117, no. 40, p. 10320.
  2. Anthamatten, M., Barnes, C. L., and Glaser, R., Stereochemistry and stereoelectronics of azines. A solid-state study of symmetrical, (E, E)-configured, parasubstituted (H, F, Cl, Br, CN) acetophenone azines, J. Org. Chem., 1994, vol. 59, p. 4336.
  3. Tang, W., Xiang, Y., and Tong, A., Salicylaldehyde azines as fluorophores of aggregation-induced emission enhancement characteristics, J. Org. Chem., 2009, vol. 74, p. 2163.
  4. Khodair, A.I. and Bertrand, P., A new approach to the synthesis of substituted 4-imidazolidinones as potential antiviral and antitumor agents, Tetrahedron, 1998, vol. 54, p. 4859.
  5. Kulaksızoglu, S. and Gup, R., A new bis(azine) tetradentate ligand and its transition metal complexes: Synthesis, characterisation, and extraction properties, Chem. Pap., 2012, vol. 66, no. 3, p. 194.
  6. Schweizer, E.E., Cao, Z., Rheingold, A.L., and Bruch, M., Reactions of azines. Preparation of 6-(phenylmethylene)-5H-pyrazolo[1,5-d][2,4]benzoxazepines, 5H,7H-pyrazolo[1,5-d][2]benzazepin-6-one, and indeno[2,3-c]pyridine-3,9-diones, J. Org. Chem., 1993, vol. 58, p. 4339.
  7. Ranjbar-Karimia, R. and Loghmani-Khouzani, H., Synthesis of new azines in various reaction conditions and investigation of their cycloaddition reaction, J. Iran. Chem. Soc., 2011, vol. 8, p. 223.
  8. Kornev, A.N., Sushev, V.V., Panova, J.S., Lukoya-nova, O.V., Ketkov, S.Y., Baranov, E.V., Fukin, G.K., Lopatin, M.A., Budnikova, Y.G., and Abakumov, G.A., N,N'-Fused bisphosphole: heteroaromatic molecule with two-coordinate and formally divalent phosphorus. Synthesis, electronic structure, and chemical properties, 2014, J. Inorg. Chem., vol. 53, p. 3243.
  9. Kornev, A.N., Panova, Y.S., Sushev, V.V., Daza D.F.D., Novikov, A.S., Cherkasov, A.V., Fukin, G.K., and Abakumov, G.A., The Nature of P(σ2λ3 ↔ σ2λ1) Dualism: 3a,6a-diaza-1,4-diphosphapentalene as a form of stabilized singlet phosphinidene, J. Inorg. Chem., 2019, vol. 58, p. 16144.
  10. Poojary, S., Sunil, D., Kekuda, D., and Sreenivasa, S., Fluorescent aromatic symmetrical azines: Synthesis and appraisal of their photophysical and electrochemical properties, Opt. Mater., 2018, vol. 85, p. 1.
  11. Sauro, V.A. and Workentin, M.S., Evaluation of the extent of conjugation in symmetrical and asymmetrical aryl-substituted acetophenone azines using electrochemical methods, J. Org. Chem., 2011, vol. 66, p. 831.
  12. Safari, J. and Gandomi-Ravandi, S., Structure, synthesis and application of azines: a historical perspective, J. RSC Adv., 2014, vol. 4, p. 46224.
  13. Gosser, D.K., Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms, Weinheim: VCH, 1993.
  14. Wang, Y., Rogers, E.I., and Compton, R.G., The measurement of the diffusion coefficients of ferrocene and ferrocenium and their temperature dependence in acetonitrile using double potential step microdisk electrode chronoamperometry, J. Electroanal. Chem., 2010, vol. 648, p. 15.
  15. Nicholson, R.S. and Shain, I., Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems, Anal. Chem., 1964, vol. 36, p. 706.
  16. Laviron, E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems, J. Electroanal. Chem., 1979, vol. 101, p. 19.
  17. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001.
  18. Gokhshtein, A.Y. and Gokhshtein, Y.P., Kinetic equation of irreversible reactions in oscillographic polarography, Dokl. Akad. Nauk SSSR, 1960, no. 3, p. 601.
  19. Li, D., Batchelor-McAuley, C., and Compton, R.G., Some thoughts about reporting the electrocatalytic performance of nanomaterials, Appl. Mater. Today, 2019, vol. 18, no. 100404.
  20. Matsuda, H. and Ayabe, Y., Theoretical analysis of polarographic waves. I. Reduction of simple metal ions, Bull. Chem. Soc. Jpn., 1955, vol. 28, p. 422.
  21. Wen, Z., Ya-Lan, L., Kui, L., Zhi-Rong, L., Li-Yong, Y., Lu, W., Yi-Xiao, F., Zhi-Fang, C., and Wei-Qun, S., Electroreduction of Gd3+ on wand Zn electrodes in LiCl–KCl eutectic: A comparison study, J. Electrochem. Soc., 2015, vol. 162, p. 53.