Examples



mdbootstrap.com



 
Статья
2022

Crystal structure of amino acid peroxosolvates; X-ray diffraction study of norleucine peroxosolvate


L. G. Kuz’minaL. G. Kuz’mina, A. V. ChurakovA. V. Churakov
Российский химический вестник
https://doi.org/10.1007/s11172-022-3409-2
Abstract / Full Text

Norleucine peroxosolvate 2Nle · 3H2O2 was studied by single-crystal X-ray diffraction. There are 16 crystallographically independent amino acid molecules and 24 hydrogen peroxide molecules per asymmetric unit of the crystal structure. The crystal packing of this compounds is typical of mesomorphic crystals. The loose layers of aliphatic moieties alternate with double layers formed by the functional groups of all structural units of the crystal through O-H⋯O or N-H⋯O hydrogen bonds. Some amino acid and hydrogen peroxide molecules are disordered. The character of disorder is considered in terms of frozen dynamics, which suggests the possible mechanism of the involvement of hydrogen peroxide in the transport of bulky natural molecules across cell membranes.

Author information
  • N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119991, Moscow, Russian FederationL. G. Kuz’mina & A. V. Churakov
References
  1. A. V. Churakov, P. V. Prikhodchenko, J. A. K. Howard, O. Lev, Chem. Commun., 2009, 4224; DOI: https://doi.org/10.1039/b906801e.
  2. M. V. Vener, A. G. Medvedev, A. V. Churakov, P. V. Prikhodchenko, T. A. Tripol’skaya, O. Lev, J. Phys. Chem. A, 2011, 115, 13657; DOI: https://doi.org/10.1021/jp207899z.
  3. P. V. Prikhodchenko, A. G. Medvedev, T. A. Tripol’skaya, A. V. Churakov, Y. Wolanov, J. A. K. Howard, O. Lev, Cryst. Eng. Comm., 2011, 13, 2399; DOI: https://doi.org/10.1039/c0ce00481b.
  4. M. A. Navasardyan, D. A. Grishanov, T. A. Tripol’skaya, L. G. Kuzmina, P. V. Prikhodchenko, A. V. Churakov, Cryst. Eng. Comm., 2018, 20, 7413; DOI: https://doi.org/10.1039/c8ce01486h.
  5. A. G. Medvedev, A. A. Mikhailov, P. V. Prikhodchenko, T. A. Tripol’skaya, O. Lev, A. V. Churakov, Russ. Chem. Bull., 2013, 62, 1871; DOI: https://doi.org/10.1007/s11172-013-0269-9.
  6. G. P. Bienert, J. K. Schjoerring, T. P. Jahn, Biochim. Biophys. Acta Biomem., 2006, 1758, 994; DOI: https://doi.org/10.1016/j.bbamem.2006.02.015.
  7. L. Chen, A. Y. Lyubimov, L. Brammer, A. Vrielink, N. S. Sampson, Biochemistry, 2008, 47, 5368; DOI: https://doi.org/10.1021/bi800228w.
  8. G. P. Bienert, A. L. D. Møller, K. A. Kristiansen, A. Schulz, I. M. Møller, J. K. Schjoerring, T. P. Jahn, J. Biol. Chem., 2007, 282, 1183; DOI: https://doi.org/10.1074/jbc.M603761200.
  9. A. V. Churakov, P. V. Prikhodchenko, J. A. K. Howard, Cryst. Eng. Comm., 2005, 7, 664; DOI: https://doi.org/10.1039/b511834d.
  10. I. Yu. Chernyshov, M. V. Vener, P. V. Prikhodchenko, A. G. Medvedev, O. Lev, A. V. Churakov, Cryst. Growth Des., 2017, 17, 214; DOI: https://doi.org/10.1021/acs.cgd.6b01449.
  11. L. G. Kuz’mina, N. S. Kucherepa, S. M. Pestov, A. N. Kochetov, N. S. Rukk, S. A. Syrbu, Crystallography Reports, 2009, 54, 862; DOI: https://doi.org/10.1134/S1063774509050204.
  12. L. G. Kuz’mina, S. M. Pestov, A. N. Kochetov, A. V. Churakov, E. Kh. Lermontova, Crystallography Reports, 2010, 55, 786; DOI: https://doi.org/10.1134/S1063774510050111.
  13. M. A. Gunina, E. Kh. Lermontova, L. G. Kuz’mina, S. M. Pestov, Crystallography Reports, 2012, 57, 733; DOI: https://doi.org/10.1134/S1063774512050057.
  14. I. I. Konstantinov, A. V. Churakov, L. G. Kuz’mina, Crystallography Reports, 2013, 58, 81; DOI: https://doi.org/10.7868/S0023476113010098.
  15. L. G. Kuz’mina, M. A. Navasardyan, A. V. Churakov, J. A. K. Howard, Mol. Cryst. Liq. Cryst., 2016, 638, 60; DOI: https://doi.org/10.1080/15421406.2016.1221953.
  16. L. G. Kuz’mina, M. A. Navasardyan, S. I. Bezzubov, Crystallography Reports, 2019, 64, 71; DOI: https://doi.org/10.1134/S0023476119010168.
  17. L. G. Kuz’mina, A. I. Vedernikov, J. A. K. Howard, E. Kh. Lermontova, A. V. Churakov, M. V. Alfimov, S. P. Gromov, J. Struct. Chem. (Engl. Transl.), 2014, 55, 1484; DOI: https://doi.org/10.1134/S0022476614080162.
  18. S. P. Gromov, A. I. Vedernikov, N. A. Lobova, L. G. Kuz’mina, S. N. Dmitrieva, Yu. A. Strelenko, J. A. K. Howard, J. Org. Chem., 2014, 79, 11416; DOI: https://doi.org/10.1021/jo5018074.
  19. L. G. Kuz’mina, A. I. Vedernikov, J. A. K. Howard, M. V. Alfimov, S. P. Gromov, CrystEngComm, 2015, 17, 4584; DOI: https://doi.org/10.1039/C5CE00653H.
  20. L. G. Kuz’mina, A. I. Vedernikov, J. A. K. Howard, S. I. Bezzubov, M. V. Alfimov, S. P. Gromov, CrystEngComm, 2016, 18, 7506; DOI: https://doi.org/10.1039/C6CE01426G.
  21. L. G. Kuz’mina, A. I. Vedernikov, S. P. Gromov, M. V. Alfimov, Crystallography Reports, 2019, 64, 691; DOI: https://doi.org/10.1134/S0023476119050126.
  22. J. Harada, K. Ogawa, Chem. Soc. Rev., 2009, 38, 2244; DOI: https://doi.org/10.1039/B813850H.
  23. L. G. Kuz’mina, I. I. Konstantinov, M. A. Navasardyan, Crystallography Reports, 2020, 65, 436; DOI: https://doi.org/10.31857/S0023476120030182.
  24. L. G. Kuz’mina, P. Kalle, E. K. Lermontova, I. I. Konstantinov, Crystallography Reports, 2020, 65, 577; DOI: https://doi.org/10.31857/S0023476120040141.
  25. L. G. Kuz’mina, I. I. Konstantinov, A. V. Churakov, Mol. Cryst. Liq. Cryst., 2018, 664, 95; DOI: https://doi.org/10.1080/15421406.2018.1470134.
  26. M. A. Navasardyan, D. A. Grishanov, P. V. Prikhodchenko, A. V. Churakov, Acta Crystallogr. E, 2020, E76, 1331; DOI: https://doi.org/10.1107/S205698902000972X.
  27. G. M. Sheldrick, SADABS. Program for scaling and correction of area detector data, University of Göttingen, Germany, 1997.
  28. G. M. Sheldrick, Acta Crystallogr. C, 2015, 71, 3; DOI: https://doi.org/10.1107/S2053229614024218.