Micro-Mesoporous Carbon Materials Prepared from the Hogweed (Heracleum) Stalks as Electrode Materials for Supercapacitors

F. S. TabarovF. S. Tabarov, M. V. AstakhovM. V. Astakhov, A. T. KalashnikA. T. Kalashnik, A. A. KlimontA. A. Klimont, I. S. KrechetovI. S. Krechetov, N. V. IsaevaN. V. Isaeva
Российский электрохимический журнал
Abstract / Full Text

The data on carbonization and surface activation of raw hogweed (Heracleum) are presented. The structural and electrochemical properties of thus synthesized carbon materials which can be used as the electrode materials in supercapacitors are studied. The hogweed samples are preliminarily carbonized at 400°C and then activated with potassium hydroxide (KOH) at temperatures of 700, 800, and 900°C in argon atmosphere. According to isotherms of nitrogen adsorption and the BET equation, the specific surface area of samples activated at 700, 800, and 900°C is 913 ± 22, 1215 ± 70, and 1929 ± 99 m2/g, respectively. As the activation temperature increases, the specific surface area and the mesopore volume of samples also increases, whereas the micropore fraction decreases. 1,1-Dimethylpyrrolidinium tetrafluoroborate in acetonitrile was used as an electrolyte. The specific capacitance of samples activated at 700, 800, and 900°C at the current density of 1 A/g is 51 ± 4, 114 ± 2, and 108 ± 3 F/g, respectively. The 40% increase in the specific surface area and the 35% increase in the volume of mesopores results in the increase in the specific capacitance. The further increase in the specific surface area and the volume of mesopores up to 70% does not increase the specific capacitance.

Author information
  • Department of Physical Chemistry, National University of Science and Technology–Moscow Institute of Steel and Alloys, Moscow, 119991, RussiaF. S. Tabarov, M. V. Astakhov, A. T. Kalashnik, A. A. Klimont & I. S. Krechetov
  • Baikov Institute of Metallurgy and Material Science, Russian Academy of Sciences, Moscow, 119334, RussiaN. V. Isaeva
  1. Lu, M., Beguin, F., and Frackowiak, E., Supercapacitors: Materials, Systems, and Applications, Weinheim: Wiley VCH, 2013.
  2. Gu, W. and Yushin, G., Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene, Energy Environ., 2014, vol. 3, p. 424.
  3. Portet, C., Yushin, G., and Gogotsi, Y., Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors, Carbon, 2007, vol. 45, p. 2511.
  4. Li, X., Xing, W., Zhuo, S., Zhou, J., Li, F., Qiao, S.Z., and Lu, G.Q., Preparation of capacitor’s electrode from sunflower seed shell, Bioresour. Technol., 2011, vol. 102, p. 1118.
  5. Elmouwahidi, A., Zapata-Benabithe, Z., Carrasco-Marín, F., and Moreno-Castilla, C., Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes, Bioresour. Technol., 2012, vol. 112, p. 185.
  6. Jain, A. and Tripathi, S.K., Almond shell-based activated nanoporous carbon electrode for EDLCs, Ionics, 2015, vol. 21, p. 1391.
  7. Teoh, K.H., Lim, C.S., Liew, C.W., Ramesh, S., and Ramesh, S., Electric double-layer capacitors with corn starch-based biopolymer electrolytes incorporating silica as filler, Ionics, 2015, vol. 21, p. 2061.
  8. Chen, X., Wu, K., Gao, B., Xiao, Q., Kong, J., Xiong, Q., Peng, X., Zhang, X., and Fu, J., Three-dimensional activated carbon recycled from rotten potatoes for highperformance supercapacitors, Waste Biomass Valorization, 2016, vol. 7, p. 551.
  9. Ramirez-Castro, C., Schütter, C., Passerini, S., and Balducci, A., Microporous carbonaceous materials prepared from biowaste for supercapacitor application, Electrochim. Acta, 2016, vol. 206, p. 452.
  10. Shang, T.X. and Jin, X.J., Waste particleboard-derived nitrogen-containing activated carbon through KOH activation for supercapacitors, J. Solid State Electro-chem., 2016, vol. 20, p. 2029.
  11. Sulaiman, K., Mat, A., and Arof, A.K., Activated carbon from coconut leaves for electrical double-layer capacitor, Ionics, 2016, vol. 22, p. 911.
  12. Tey, J.P., Careem, M.A., Yarmo, M.A., and Arof, A.K., Durian shell-based activated carbon electrode for EDLCs, Ionics, 2016, vol. 22, p. 1209.
  13. Kubo, S., Uraki, Y., and Sano, Y., Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping, Carbon, 1998, vol. 36, p. 1119.
  14. Sarkar, S. and Adhikari, B., Synthesis and characterization of lignin–HTPB copolyurethane, Eur. Polym. J., 2001, vol. 37, p. 1391.
  15. Olivares-Marín, M., Fernández-González, C., Macías-García, A., and Gómez-Serrano, V., Preparation of activated carbon from cherry stones by chemical activation with ZnCl2, Appl. Surf. Sci., 2006, vol. 252, p. 5967.
  16. Sing, K.S.W, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem., 1985, p. 603.
  17. Thommes, M., Kaneko, K., Neimark-Alexander, V., Olivier-James, P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing-Kenneth, S.W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 2015, p. 1051.
  18. Marsh, H., Yan, D.S., O’Grady, T.M., and Wennerberg, A., Formation of active carbons from cokes using potassium hydroxide, Carbon, 1984, vol. 22, p. 603.
  19. Yoon, S.H., Lim, S., Song, Y., Ota, Y., Qiao, W., Tanaka, A., and Mochida, I., KOH activation of carbon nanofibers, Carbon, 2004, vol. 42, p. 1723.
  20. Wang, J. and Kaskel, S., KOH activation of carbon-based materials for energy storage, J. Mater. Chem., 2012, vol. 22, p. 23710.
  21. Mysyk, R., Raymundo-Piñero, E., and Béguin, F., Saturation of subnanometer pores in an electric double-layer capacitor, Electrochem. Commun., 2009, vol. 11, p. 554.
  22. Gryglewicz, G., Machnikowski, J., Lorenc-Grabowska, E., Lota, G., and Frackowiak, E., Effect of pore size distribution of coal-based activated carbons on double layer capacitance, Electrochim. Acta, 2005, vol. 50, p. 1197.
  23. Barbieri, O., Hahn, M., Herzog, A., and Kötz, R., Capacitance limits of high surface area activated carbons for double layer capacitors, Carbon, 2005, vol. 43, p. 1303.
  24. Chmiola, J., Yushin, G., Dash, R., and Gogotsi, Y., Effect of pore size and surface area of carbide derived carbons on specific capacitance, J. Power Sources, 2006, vol. 158, p. 765.
  25. Brett, C.M.A. and Brett, A.M.O., Electrochemistry— Principles, Methods and Applications, Oxford: Oxford University, 1993.
  26. Taberna, P.L., Simon, P., and Fauvarque, J.F., Electrochemical characteristics and impedance spectros-copy studies of carbon-carbon supercapacitors, J. Elec-trochem. Soc., 2003, vol. 150, p. A292.
  27. Kierzek, K., Frackowiak, E., Lota, G., Gryglewicz, G., and Machnikowski, J., Electrochemical capacitors based on highly porous carbons prepared by KOH activation, Electrochim. Acta, 2004, vol. 49, p. 515.
  28. Lust, E., Jänes, A., and Arulepp, M., Influence of solvent nature on the electrochemical parameters of electrical double layer capacitors, J. Electroanal. Chem., 2004, vol. 562, p. 33.