Статья
2017

Pt- and Ir-based disperse catalysts synthesized in a magnetron for water electrolyzers with a solid polymer electrolyte


S. I. Nefedkin S. I. Nefedkin , M. A. Klimova M. A. Klimova , E. A. Kolomeitseva E. A. Kolomeitseva , M. K. Klochnev M. K. Klochnev , E. E. Levin E. E. Levin , O. A. Petrii O. A. Petrii
Российский электрохимический журнал
https://doi.org/10.1134/S1023193517030119
Abstract / Full Text

Disperse catalytic compositions for water electrolysis in electrolyzers with a solid polymer electrolyte were obtained by magnetron sputtering of C–Pt and Mo–Ir sectional targets. The catalysts were studied by X-ray diffraction analysis, electron microscopy, and voltammetry. The synthesized Pt–С and Ir–Mo catalysts with lowered contents of the precious component were subjected to prolonged trials in an electrolysis cell with a solid polymer electrolyte and showed high activity and stability.

Author information
  • Moscow Power Engineering Institute (National Research University) (MEI), Moscow, 111250, Russia

    S. I. Nefedkin, M. A. Klimova, E. A. Kolomeitseva & M. K. Klochnev

  • Faculty of Chemistry, Moscow State University, Moscow, 119991, Russia

    E. E. Levin & O. A. Petrii

References
  1. Arent, D.J., Wise, A., and Gelman, R., Energy Economics, 2011, vol. 33, p. 584.
  2. Muradov, N.Z. and Veziroglu, T.N., Int. J. Hydrogen Energy, 2008, vol. 33, p. 6804.
  3. Carmo, M., Fritz, D.L., Mergel, J., and Stolten, D., Int. J. Hydrogen Energy, 2013, vol. 38, p. 4901.
  4. Kadakia, K., Datta, M.K., Velikokhatnyi, O.I., Jampani, P., Park, S.K., Saha, P., Poston, J.A., Manivannan, A., and Kumta, P.N., Int. J. Hydrogen Energy, 2012, vol. 37, p. 3001.
  5. Kadakia, K., Datta, M.K., Velikokhatnyi, O.I., Jampani, P.H., and Kumta, P.N., Int. J. Hydrogen Energy, 2014, vol. 39, p. 664.
  6. Takasu, Y., Yoshinaga, N., and Sugimoto, W., Electrochem. Commun., 2008, vol. 10, p. 668.
  7. Cheng, J., Zhang, H., Ma, H., Zhong, H., and Zou, Y., Int. J. Hydrogen Energy, 2009, vol. 34, p. 6609.
  8. Adams, R. and Shriner, R.L., J. Am. Chem. Soc., 1923, vol. 45, p. 2171.
  9. Kakati, N., Maiti, J., Lee, S.H., Jee, S.H., Viswanathan, B., and Yoon, Y.S., Chem. Rev., 2014, vol. 114, p. 12397.
  10. Grigoriev, S.A., Millet, P., and Fateev, V.N., J. Power Sources, 2008, vol. 177, p. 281.
  11. Hinnemann, B., Moses, P.G., Bonde, J., Jørgensen, K.P., Nielsen, J.H., Horch, S., Chorkendorff, I., and Nørskov, J.K., J. Am. Chem. Soc., 2005, vol. 127, p. 5308.
  12. Selvan, R.K. and Gedanken, A., Nanotechnology, 2009, vol. 20, p. 105602.
  13. Cho, Y.-H., Park, H.-S., Cho, Y.-H., Jung, D.-S., Park, H.-Y., and Sung, Y.-E., J. Power Sources, 2007, vol. 172, p. 89.
  14. Petrii, O.A., Russ. Chem. Rev., 2015, vol. 84, p. 159.
  15. Yagi, M., Tomita, E., and Kuwabara, T., J. Electroanal. Chem., 2005, vol. 579, p. 83.
  16. El Sawy, E.N. and Birss, V.I., J. Mater. Chem., 2009, vol. 19, p. 8244.
  17. Xu, J., Liu, G., Li, J., and Wang, X., Electrochim. Acta, 2012, vol. 59, p. 105.
  18. Mayousse, E., Maillard, F., Fouda-Onana, F., Sicardy, O., and Guillet, N., Int. J. Hydrogen Energy, 2011, vol. 36, p. 10474.
  19. Wu, X., Tayal, J., Basu, S., and Scott, K., Int. J. Hydrogen Energy, 2011, vol. 36, p. 14796.
  20. De Pauli, C.P. and Trasatti, S., J. Electroanal. Chem., 1995, vol. 396, p. 161.
  21. De Pauli, C.P. and Trasatti, S., J. Electroanal. Chem., 2002, vols. 538–539, p. 145.
  22. Fierro, S., Kapalka, A., and Comninellis, C., Electrochem. Commun., 2010, vol. 12, p. 172.
  23. Murakami, Y., Tsuchiya, S., Yahikozawa, K., and Takasu, Y., Electrochim. Acta, 1994, vol. 39, p. 651.
  24. Marshall, A., Børresen, B., Hagen, G., Tsypkin, M., and Tunold, R., Electrochim. Acta, 2006, vol. 51, p. 3161.
  25. Marshall, A.T., Sunde, S., Tsypkin, M., and Tunold, R., Int. J. Hydrogen Energy, 2007, vol. 32, p. 2320.
  26. Song, S., Zhang, H., Ma, X., Shao, Z., Baker, R.T., and Yi, B., Int. J. Hydrogen Energy, 2008, vol. 33, p. 4955.
  27. Wu, X. and Scott, K., Int. J. Hydrogen Energy, 2011, vol. 36, p. 5806.
  28. Terezo, A.J., Bisquert, J., Pereira, E.C., and Garcia-Belmonte, G., J. Electroanal. Chem., 2001, vol. 508, p. 59.
  29. O’Hayre, R., Lee, S.-J., Cha, S.-W., and Prinz, F.B., J. Power Sources, 2002, vol. 109, p. 483.
  30. Haug, A.T., White, R.E., Weidner, J.W., Huang, W., Shi, S., Stoner, T., and Rana, N., J. Electrochem. Soc., 2002, vol. 149, p. A280.
  31. Gruber, D., Ponath, N., Müller, J., and Lindstaedt, F., J. Power Sources, 2005, vol. 150, p. 67.
  32. Wee, J.-H., Lee, K.-Y., and Kim, S.H., J. Power Sources, 2007, vol. 165, p. 667.
  33. Slavcheva, E., Radev, I., Bliznakov, S., Topalov, G., Andreev, P., and Budevski, E., Electrochim. Acta, 2007, vol. 52, p. 3889.
  34. Cavarroc, M., Ennadjaoui, A., Mougenot, M., Brault, P., Escalier, R., Tessier, Y., Durand, J., Roualdès, S., Sauvage, T., and Coutanceau, C., Electrochem. Commun., 2009, vol. 11, p. 859.
  35. Fedotov, A.A., Grigoriev, S.A., Lyutikova, E.K., Millet, P., and Fateev, V.N., Int. J. Hydrogen Energy, 2013, vol. 38, p. 426.
  36. Nefedkin, S.I., Kholichev, O.V., Pavlov, V.I., Bogomolova, A.S., Sedel’nikov, N.G., Gerasimova, E.V., and Dobrovol’skii, Y.A., Russ. J. Electrochem., 2014, vol. 50, p. 617.
  37. Nefedkin, S.I., Sedelnikov, N.G., Fatyushin, A.M., Holichev, O.V., Bogomolova, A.S., and Kiselev, I.V., J. Phys.: Conf. Ser., 2011, vol. 291, no. 1, p. 012003.
  38. Scardi, P. and Leoni, M., Acta Crystallogr., 2002, vol. A58, p. 190.
  39. Kinoshita, K. and Bett, J.A.S., Carbon, 1974, vol. 12, p. 525.
  40. Chen, D., Tao, Q., Liao, L.W., Liu, S.X., Chen, Y.X., and Ye, S., Electrocatalysis, 2011, vol. 2, p. 207.
  41. Heidrich, H.-J., Müller, R., and Podlovchenko, B.I., J. Appl. Electrochem., 1990, vol. 20, p. 686.
  42. Nefedkin, S.I., Korovin, N.V., Gladkikh, I.P., Mansurov, G.N., and Petrii, O.A., Soviet Electrochemistry., 1988, vol. 24, p. 371.