Examples



mdbootstrap.com



 
Статья
2021

Enhanced Photocatalytic Activity over La(OH)3/CaTiO3 Heterostructure on the Degradation of Methylene Blue


Wen-Wen GaoWen-Wen Gao, Ting SuTing Su, Ying GongYing Gong, Xiang-Rong MaXiang-Rong Ma, Zhi-Fang ZhangZhi-Fang Zhang, Yong-Hui SongYong-Hui Song, Dui DangDui Dang, Luo-Ting CaoLuo-Ting Cao
Российский журнал прикладной химии
https://doi.org/10.1134/S1070427221120107
Abstract / Full Text

La(OH)3/CaTiO3 composite photocatalyst with a heterjunction structure was synthesized by a facile method of solvothermal procedure. La(OH)3 was dispersed on the surface of CaTiO3 with butterfly-like dendrites. The photocatalytic activity of La(OH)3/CaTiO3 heterostructure was enhanced for methylene blue (MB) degradation under ultraviolet (UV) irradiation. Especially 7La(OH)3/CaTiO3 obtained a highest MB degradation of 95.9%, which is 1.33 times higher than that of pure CaTiO3. The trapping experiment suggested that OH active radical plays the major role. The enhanced photocatalytic activity over 7La(OH)3/CaTiO3 heterostructure on the degradation of MB is attributed to the butterfly-like dendrites CaTiO3 and the effectively separation of charged carriers.

Author information
  • Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, Shaanxi, ChinaWen-Wen Gao, Ting Su, Ying Gong, Xiang-Rong Ma, Zhi-Fang Zhang, Dui Dang & Luo-Ting Cao
  • Key Laboratory of Gold and Resources of Shaanxi Province, School of Metallurgical Engineering, Xi’an University of Architecture and Technology, Xi’an, 710055, Shaanxi, ChinaYong-Hui Song
References
  1. AlSalka, L.I., Granone, Ramadan, W., Hakki, A., Dillert, R., and Bahnemann, D.W., Applied Catalysis B: Environmental, 2019, vol. 244, pp. 1065–1095. https://doi.org/10.1016/j.apcatb.2018.12.014
  2. Zhang, H., Chen, G., Li, Y., and Teng, Y., International Journal of Hydrogen Energy, 2010, vol. 35, no. 7, pp. 2713–2716. https://doi.org/10.1016/j.ijhydene.2009.04.050
  3. Zhang, H., Chen, G., He, X., and Xu, J., Journal of Alloys and Compounds, 2012, vol. 516, pp. 91–95. https://doi.org/10.1016/j.jallcom.2011.11.142
  4. Zhuang, Q., Tian, S., Lin, W., Yang, L., Chen, Li, and Liu, P., Applied Catalysis B: Environmental, 2014, vol. 156, pp. 108–115. https://doi.org/10.1016/j.apcatb.2014.02.015
  5. Demircivi, P., and Simsek, E.B., Journal of Alloys and Compounds, 2019, vol. 774, pp. 795–802. https://doi.org/10.1016/j.jallcom.2018.09.354
  6. Liu, Y., Ye, S., Xie, H., Zhu, J., and Li, C., Advanced Materials, 2020, vol. 32, no. 7, p. 1906513. https://doi.org/10.1002/adma.201906513
  7. Niishiro, R., Tanaka, S., and Kudo, A, Applied Catalysis B Environmental, 2014, vol. 150–151, pp. 187–196. https://doi.org/10.1016/j.apcatb.2013.12.015
  8. Dong, W., Song, B., Meng, W., Zhao, G., and Han, G., Applied Surface Science, 2015, vol. 349, pp. 272–278. https://doi.org/10.1016/j.apsusc.2015.05.006
  9. Lim, S., Song, S., Jeong, Y., Kang, H., Park, S., and Kim, K., Journal of Electronic Materials, 2017, vol. 46, no. 10, pp. 6096–6103. https://doi.org/10.1007/s11664-017-5551-4
  10. Huang, X., Yan, X., Wu, H., Fang, Y., Min, Y., Li, W., and Wu, Z., Transactions of Nonferrous Metals Society of China, 2016, vol. 26, no. 2, pp. 464–471. https://doi.org/10.1016/S1003-6326(16)64097-9
  11. Stoyanova, D., Stambolova, I., Blaskov, V., Zaharieva, K., Avramova, I., Dimitrov, O., and Nedyalkov, N., Nano-Structures and Nano-Objects, 2019, vol. 18, pp. 100301. https://doi.org/10.1016/j.nanoso.2019.100301
  12. Han, C., Yang, H., and Xue, X., Transactions of Nonferrous Metals Society of China, 2014, vol. 24, no. 10, pp. 3215–3220. https://doi.org/10.1016/S1003-6326(14)63463-4
  13. Yang, H., Han, C., and Xue, X., Journal of Environmental Sciences, 2014, vol. 26, no. 7, pp. 1489–1495. https://doi.org/10.1016/j.jes.2014.05.015
  14. Li, X., Wang, G., and Yang, C., Research on Chemical Intermediates, 2015, vol. 41, no. 5, pp. 3031–3039. https://doi.org/10.1007/s11164-013-1412-9
  15. Han, J., Liu, Y., Dai, F., Zhao, R., and Wang, L., Applied Surface Science, 2018, vol. 459, pp. 520–526. https://doi.org/10.1016/j.apsusc.2018.08.026
  16. Tang, Q., Shi, C., Shi, W., Huang, X., Ye, Y., Jiang, W,. and Li, D., Science of The Total Environment, 2019, vol. 662, pp. 511–520. https://doi.org/10.1016/j.scitotenv.2019.01.159
  17. Gangwar, B., Irusta, S., and Sharma, S., Journal of Luminescence, 2020, vol. 219, p. 116893. https://doi.org/10.1016/j.jlumin.2019.116893
  18. Zou, H., Guo, F., Luo, M., Yao, Q., and Lu, Z., International Journal of Hydrogen Energy, 2020, vol. 45, no. 20, pp. 11641–11650. https://doi.org/10.1016/j.ijhydene.2020.02.074
  19. Sun, Y., Xiao, X., Dong, X., Dong, F., and Zhang, W., Chinese Journal of Catalysis, 2017, vol. 38, no. 2, pp. 217–226. https://doi.org/10.1016/S1872-2067(17)62753-0
  20. Lu, L., Ni, S., Liu, G., and Xu, X., International Journal of Hydrogen Energy, 2017, vol. 42, no. 37, pp. 23539–23547. https://doi.org/10.1016/j.ijhydene.2017.01.064
  21. Clament, S., Judith, V., John, K,. Journal of Colloid and Interface Science, 2013, vol. 407, pp. 215–224. https://doi.org/10.1016/j.jcis.2013.06.004
  22. Dong, W., Zhao, G., Song, B., Xu, G., Zhou, J., and Han, G., CrystEngComm, 2012, vol. 14, no. 20, p. 6990. https://doi.org/10.1039/c2ce25472g
  23. Dhanalakshmi, R., Muneeswaran, M., Shalini, K., and Giridharan, N., Materials Letters, 2016, vol. 165, pp. 205–209. https://doi.org/10.1016/j.matlet.2015.11.106
  24. Lu, Z., Ming, H., Yang, L., Ma, Z., Li, Y., Wang, D., and Hua, Z, Rsc Advances, 2015, vol. 5, pp. 47820–47829. https://doi.org/10.1039/C5RA08795C
  25. Simões, A.Z., Stojanovic, B.D., Ramirez, M.A., Cavalheiro, A.A., and Varela, J.A, Ceramics International, 2008, vol. 34, no. 2, pp. 257–261. https://doi.org/10.1016/j.ceramint.2006.09.019
  26. Yan, Y., Yang, H., Zhao, X., Li, R., and Wang, X., Materials Research Bulletin, 2018, vol. 105, pp. 286–290. https://doi.org/10.1016/j.materresbull.2018.05.008
  27. Pei, J., Meng, J., Wu, S., Lin, Q., Wei, X., Li, J., and Zhang, Z, Materials Letters, 2020, vol. 276, p. 128229 https://doi.org/10.1016/j.matlet.2020.128229
  28. Zhang, J., Kang, Q., Yang, Z., Dai, H., Zhuang, D., and Wang, P., Journal of Materials Chemistry A, 2013, vol. 1, no. 38, p. 11623. https://doi.org/10.1039/c3ta12669b
  29. Nguyen, C.H., and Juang, R, Journal of Industrial and Engineering Chemistry, 2019, vol. 76, pp. 296–309. https://doi.org/10.1016/j.jiec.2019.03.054
  30. Chen, L., Zhang, Q., Huang, R., Yin, S., Luo, S., Au, C., Dalton Transactions, 2012, vol. 41, no. 31, p. 9513. https://doi.org/10.1039/c2dt30543g
  31. Long, M.C., Cai, W.M., and Cai, J., Journal of Physical Chemistry B, 2006, vol. 110, no. 41, p. 20211. https://doi.org/10.1021/jp063441z
  32. Rong, X., Qiu, F., Rong, J., Yan, J., Zhao, H., Zhu, X., and Yang, D., Journal of solid state chemistry, 2015, vol. 230, pp. 126–134. https://doi.org/10.1016/j.jssc.2015.07.003
  33. Yan, Y., Yang, H., Yi, Z., Li, R., and Xian, T., Solid State Sciences, 2020, vol. 100, p. 106102. https://doi.org/10.1016/j.solidstatesciences.2019.106102
  34. O, S., Yan, J., Wang, H., Wang, Z., and Jiang, Q, Journal of Power Sources, 2014, vol. 262, pp. 386–390. https://doi.org/10.1016/j.jpowsour.2014.03.059
  35. Wu, F., Liu, W., Qiu, J., Li, J., Zhou, W., Fang, Y., Zhang, S., and Li, X., Applied surface science, 2015, vol. 358, pp. 25–435. https://doi.org/10.1016/j.apsusc.2015.08.161
  36. Chen, T., Zheng, Y., Lu, Z., Xu, T., Liu, Y., Meng, X., Xu, G., and Han, G., Nanotechnology, 2019, vol. 30, no. 47, p. 475709. https://doi.org/10.1088/1361-6528/ab3baa
  37. Lin, H., Chen, C., Lee, W.W., Lai, Y., Chen, J., Chen, Y., and Fu, J, RSC Advances, 2016, vol. 6, no. 3, pp. 2323–2336. https://doi.org/10.1039/C5RA21339H
  38. Fan, H., Lu, C., Lee, W.W., Chiou, M., and Chen, C., Journal of Hazardous Materials, 2011, vol. 185, no. 1, pp. 227–235. https://doi.org/10.1016/j.jhazmat.2010.09.022
  39. Adeleke, J., Theivasanthi, T., Thiruppathi, M., Swaminathan, M., Akomolafe, T., and Alabi, A., Applied Surface Science, 2018, vol. 455, pp. 195–200. https://doi.org/10.1016/j.apsusc.2018.05.184