Статья
2019

Electrocatalytic Properties of Rh/C and Pt-Rh/C Catalysts Fabricated by the Method of Electrochemical Dispersion


N. A. Faddeev N. A. Faddeev , A. B. Kuriganova A. B. Kuriganova , I. N. Leont′ev I. N. Leont′ev , N. V. Smirnova N. V. Smirnova
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519030066
Abstract / Full Text

The Pt/C, Rh/C, and Pt-Rh/C catalytic systems with uniform distribution of metal phase over the surface of carbon support and an average size of Pt and Rh nanoparticles of 7.3 and 6.5 nm, respectively, are fabricated by the method of electrochemical dispersion of metals in the aqueous electrolytes containing Na+. It is shown that the double-layer potential E = 300 mV (RHE) is the optimal potential of CO adsorption for determining the electrochemically active surface area of Pt/C, Rh/C, and Pt-Rh/C catalysts by the method of oxidative desorption of CO. The introduction of Rh into the Pt/C catalyst enables us to increase the specific activity and reduce the potential of the onset of methanol oxidation.

Author information
  • Platov South-Russian State Polytechnic University (NPI), Novocherkassk, Rostov oblast, 346428, Russia

    N. A. Faddeev, A. B. Kuriganova & N. V. Smirnova

  • Southern Federal University, Rostov-on-Don, 344090, Russia

    I. N. Leont′ev

References
  1. Pedersen, C.M., Escudero-Escribano, M., Velázquez-Palenzuela, A., Christensen, L.H., Chorkendorff, I., and Stephens, I.E.L., Benchmarking Pt-based electro-catalysts for low temperature fuel cell reactions with the rotating disk electrode: oxygen reduction and hydrogen oxidation in the presence of CO (review article), Elec-trochim. Acta, 2015, vol. 179, p. 647.
  2. Gomez-Marin, A.M. and Hernández-Ortiz, J.P., Langmuir-Hinshelwood mechanism including lateral interactions and species diffusion for CO electro-oxidation on metallic surfaces, J. Phys. Chem. C, 2014, vol. 118, p. 2475.
  3. Mikhailova, A.A., Pasynskii, A.A., Grinberg, V.A., Velikodnyi, Yu.A., and Khazova, O.A., CO and methanol oxidation at platinum—tin electrodes, Russ. J. Electrochem., 2010, vol. 46, p. 26.
  4. Kuzov, A.V., Tarasevich, M.R., and Bogdanovskaya, V.A., Catalysts of ethanol anodic oxidation for ethanol—air fuel cell with a proton-conducting polymer electrolyte, Russ. J. Electrochem., 2010, vol. 46, p. 422.
  5. Leontyev, I., Kuriganova, A., Kudryavtsev, Y., Dkhil, B., and Smirnova, N., New life of a forgotten method: Electrochemical route toward highly efficient Pt/C catalysts for low-temperature fuel cells, Appl. Catal. A, 2012, vols. 431–432, p. 120.
  6. Smirnova, N.V., Kuriganova, A.B., Novikova, K.S., and Gerasimova, E.V., The role of carbon support morphology in the formation of catalytic layer of solidpolymer fuel cell, Russ. J. Electrochem., 2014, vol. 50, p. 899.
  7. Roisnel, T. and Rodríquez-Carvajal, J., WinPLOTR: A Windows tool for powder diffraction pattern analysis. Materials Science Forum, Proceedings of the European Powder Diffraction Conference (EPDIC7), 2001, vols. 378–381, p. 118.
  8. Holland, T.J.B. and Redfern, S.A.T., UNITCELL: a nonlinear least-squares program for cell-parameter refinement and implementing regression and deletion diagnostics, J. Appl. Crystallogr., 1997, vol. 30, p. 84.
  9. Watt-Smith, M.J., Friedrich, J.M., Rigby, S.P., Ralph, T.R., and Walsh, F.C., Determination of the electrochemically active surface area of Pt/C PEM fuel cell electrodes using different adsorbates, J. Phys. D: Appl. Phys., 2008, vol. 41, p. 174004.
  10. Delpeuch, A.B., Maillard, F., Chatenet, M., Soudant, P., and Cremers, C., Ethanol oxidation reaction (EOR) investigation on Pt/C, Rh/C, and Pt-based bi- and tri-metallic electrocatalysts: A DEMS and in situ FTIR study, Appl. Catal. B: Environ., 2016, vol. 181, p. 672.
  11. Damaskin, B.B., Petrii, O.A., and Batrakov, V.V., Adsorption of organic compounds on electrodes of platinum-group metals, Moscow: Nauka, 1968.
  12. Zhang, Y., Gao, X., and Weaver, M.J., Nature of surface bonding on voltammetrically oxidized noble metals in aqueous media as probed by real-time surface-enhanced Raman spectroscopy, J. Phys. Chem., 1993, vol. 97, p. 8656.
  13. Lima, F.H.B., Profeti, D., Lizcano-Valbuena, W.H., Ticianelli, E.A., and Gonzalez, E.R., Carbon-dispersed Pt-Rh nanoparticles for ethanol electro-oxidation. Effect of the crystallite size and of temperature, J. Electroanal. Chem., 2008, vol. 617, p. 121.
  14. Fang, L., Vidal-Iglesias, F.J., Huxter, S.E., Attard, G.A., and Wells, P.B., RhPt/graphite catalysts for CO electrooxidation: Performance of mixed metal and alloyed surfaces, Surf. Sci., 2015, vol. 631, p. 258.
  15. Hammer, B., Nørskov, J.K., Theoretical surface science and catalysis - calculations and concepts, in Impact of Surface Science on Catalysis, Gates, B.C. and Knozinger, H., Eds., vol. 45 of Advances in Catalysis, Academic Press, 2000, pp. 71–129.
  16. Lin, X.-F., Ren, B., and Tian, Z.-Q., Electrochemical and surface-enhanced Raman spectroscopic studies on the adsorption and electrooxidation of C1 molecules on a roughened Rh electrode, J. Phys. Chem. B, 2004, vol. 108, p. 981.
  17. De Souza, J.P.I., Queiroz, S.L., Bergamaski, K., Gonzalez, E.R., and Nart, F.C., Electro-oxidation of etha-nol on Pt, Rh, and PtRh electrodes. A study using DEMS and in-situ FTIR techniques, J. Phys. Chem. B, 2002, vol. 106, p. 9825.