Examples



mdbootstrap.com



 
Статья
2021

Mechanism of the Reaction between Cyanocobalamin and Reduced Flavin Mononucleotide


I. A. Dereven’kovI. A. Dereven’kov, K. A. UgodinK. A. Ugodin, S. V. MakarovS. V. Makarov
Российский журнал физической химии А
https://doi.org/10.1134/S003602442110006X
Abstract / Full Text

A study on the kinetics of the reaction between cyanocobalamin (vitamin B12, CNCbl) and the reduced form of flavin mononucleotide (FMNH2) in weakly acidic, neutral, and slightly alkaline media is performed. It is shown that FMNH2 can reduce CNCbl to cobalamin(II) (Cbl(II)). It is established that protonated, mono-deprotonated, and di-deprotonated forms of FMNH2 can participate in the reaction. The reaction mechanism includes the slow substitution of the 5,6-dimethylbenzimidazole nucleotide with FMNH2 molecule, rapid electron transfer from FMNH2 to Co(III) ions, and the subsequent dissociation of cyanide. The reaction is reversible, due to the ability of the oxidized form of FMNH2 (FMN) to react with the Cbl(II) complex.

Author information
  • Ivanovo State University of Chemical Technology, 153000, Ivanovo, RussiaI. A. Dereven’kov, K. A. Ugodin & S. V. Makarov
References
  1. J. Bridwell-Rabb and C. L. Drennan, Curr. Opin. Chem. Biol. 37, 63 (2017).
  2. K. L. Brown, Chem. Rev. 105, 2075 (2005).
  3. B. Krautler, Biochem. Soc. Trans. 33, 806 (2005).
  4. R. Banerjee, ACS Chem. Biol. 1, 149 (2006).
  5. L. Hannibal, P. M. DiBello, and D. W. Jacobsen, Clin. Chem. Lab. Med. 51, 477 (2013).
  6. C. Gherasim, M. Lofgren, and R. Banerjee, J. Biol. Chem. 288, 13186 (2013).
  7. L. Hannibal, J. Kim, N. E. Brasch, et al., Mol. Genet. Metab. 97, 260 (2009).
  8. J. Kim, L. Hannibal, C. Gherasim, D. W. Jacobsen, and R. Banerjee, J. Biol. Chem. 284, 33418 (2009).
  9. J. Kim, C. Gherasim, and R. Banerjee, Proc. Natl. Acad. Sci. U. S. A. 105, 14551 (2008).
  10. M. Koutmos, C. Gherasim, J. L. Smith, and R. Banerjee, J. Biol. Chem. 286, 29780 (2011).
  11. D. Lexa, J. M. Savéant, and J. Zickler, J. Am. Chem. Soc. 102, 2655 (1980).
  12. I. A. Dereven’kov, L. Hannibal, S. V. Makarov, and P. A. Molodtsov, J. Biol. Inorg. Chem. 25, 125 (2020).
  13. H. Olteanu and R. Banerjee, J. Biol. Chem. 276, 35558 (2001).
  14. H. Olteanu, T. Munson, and R. Banerjee, Biochemistry 41, 13378 (2002).
  15. K. R. Wolthers and N. S. Scrutton, Biochemistry 43, 490 (2004).
  16. K. Zhou and F. Zelder, J. Porphyr. Phthalocyan. 15, 555 (2011).
  17. T. A. Stich, N. R. Buan, and T. C. Brunold, J. Am. Chem. Soc. 126, 9735 (2004).
  18. P. Macheroux, S. Ghisla, C. Sanner, et al., BMC Biochem. 6, 26 (2005).
  19. S. G. Mayhew, Eur. J. Biochem. 265, 698 (1999).
  20. D. S. Salnikov, I. A. Dereven’kov, E. N. Artyushina, and S. V. Makarov, Russ. J. Phys. Chem. A 87, 44 (2013).
  21. P. George, D. H. Irvine, and S. C. Glauser, Ann. N. Y. Acad. Sci. 88, 393 (1960).
  22. E. J. Land and A. J. Swallow, Biochemistry 8, 2117 (1969).
  23. B. Holmström, Photochem. Photobiol. 3, 97 (1964).
  24. I. A. Dereven’kov, L. Hannibal, M. Dürr, et al., J. Organomet. Chem. 839, 53 (2017).