Examples



mdbootstrap.com



 
Статья
2020

Thermodiffusive Mechanism of Mechanical Stress Development Near the Boundary Between Materials with Differing Rheological Properties


M. V. Chepak-GizbrekhtM. V. Chepak-Gizbrekht
Российский физический журнал
https://doi.org/10.1007/s11182-020-01876-0
Abstract / Full Text

Principles of formation of thermodiffusive stresses in a viscoeleastic bilayer material under the temperature influence are investigated. It is shown that it is possible to use an analytical solution of the problem of mechanical equilibrium of a bilayer viscoelstic plate for an estimation of stresses and strains due to heating and diffusion taking into account the Soret effect. It is demonstrated that the viscoeleastic effect is critical in the cases where the transport processes occur within the times on the order of 0.01 s and shorter.

Author information
  • Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, Tomsk, RussiaM. V. Chepak-Gizbrekht
References
  1. R. Panata, S. Zhanga, and K. J. Hsiaa, Acta Mater., 51, Iss. 1, 239–249 (2003).
  2. J. O. Carneiro, V. Teixeira, A. Portinha, et al., Rev. Adv. Mater. Sci., 7, 32–40 (2004).
  3. A. D. Korotaev, I. Yu. Litovchenko, and S. V. Ovchinnikov, Zh. Fizich. Mezomekh., 21, No. 5, 82–89 (2018).
  4. A. I. Kalinichenko, S. S. Perepelkin, and V. E. Strel'nitskij, Probl. Atom. Sci. Tech., No. 1. Series: Plasma Physics (23), 203–206 (2017).
  5. M. Kianicova, K. Slamecka, and J. Pokluda, in: Proc. Conf. METAL 2011, 840–846, Tanger sro, Ostrava (2011).
  6. A. R. Gachkevich, A. B. Zemskov, and D. V. Tarlakovskii, Izvest. Sarat. Uni. Ser.: Mat. Mekh. Inform., 13,Iss. 4, Part 1, 52–59 (2013).
  7. Yu. F. Ivanov, A. I. Potekaev, A. A. Klopotov, et al., Russ. Phys. J., 62, No. 6, 940–947 (2019).
  8. W. G. Mao, Y. C. Zhou, L. Yang, and X. H. Yu, Mech. Mater., 38, Iss. 12, 1118– 1127 (2006).
  9. A. Kagawa, Ya. Ohta, K. Nakayama, and T. Chifu, Mater. Trans., 44, No. 8, 1593–1598 (2003).
  10. B. A. Boley and J. H. Weiner, Theory of Thermal Stresses, John Wiley, New York (1960).
  11. Коваленко A. D. Kovalenko, Thermal Elasticity [in Russian], Vyssha Shkola, Kiev (1975).
  12. V. S. Eremeev, Diffusion and Stresses [in Russian], Enegoatomizdat, Moscow (1984).
  13. A. G. Knyazeva, I. L. Pobol’, and I. G. Oleshuk, Izvestiya VUZov. Fiz., 56, No. 7/2, 14 – 24 (2013).
  14. B. S. Bokstein, S. Z. Bokstein, and A. A. Zhukhovitskii, Thermodynamics and Kinetics of Diffusion in Solids [in Russian], Metallurgiya, Moscow (1974).
  15. M. V. Chepak-Gizbrekht and A. G. Knyazeva, J. Eng. Phys. Thermophys., 91, No. 2, 265–277 (2018).
  16. G. Bateman, Tables of Integral Transforms. Part I, Fourier, Laplace and Mellin Transforms, New York-Toronto-London, Mc Graw-Hill Book Company, Inc. (1954).
  17. N. A. Babychev, N. А. Babushkina, A. M. Bratkovskii, et al., Physical Quantities. Reference Book [in
  18. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology – New Series. Diffusion in Solid Metals and Alloys [Electronic resource] (Ed. H. Mehrer), Springer, Berlin (1990). URL: http://onlinelibrary.wiley.com/doi/10.1002/crat.2170231029/abstract. (access date: 3.07.2019). – DOI: https://doi.org/10.1002/crat.2170231029.
  19. A. G. Shashkov, A. F. Zolotukhina, and V. B. Vasilenko, Factor of Thermodiffusion of Gas Mixtures. Determination Methods (Ed. S. A. Zhdanka) [in Russian], Belorusskaya Nauka, Minsk (2007).
  20. Modification and Alloying of the Surface with Laser, Ion, and Electron Beams: industrial press (Ed. J. M. Pout) [in Russian], Mashinostroyeniye, Moscow (1987).
  21. M. Korolczuk-Hejnak and P. Migas, Arch. Metall. Mater., 57, Iss. 2, 583–591 (2012).
  22. G. Kaptay, Z. Metallkd., 96, Iss. 1, 24–31 (2005).
  23. A. V. Asanov, I. V. Antoshkin, N. V. Malkov, et al., Vestnik YuUrGU, Ser. Metallurg., No. 9(109), 7–9 (2008).