Electrochemical Properties of Composite Cathode Materials Pr1.95La0.05CuO4–Ce0.9Gd0.1O1.95 for Intermediate Temperature Solid Oxide Fuel Cells

N. V. Lyskov N. V. Lyskov , M. Z. Galin M. Z. Galin , N. B. Kostretsova N. B. Kostretsova , G. M. Eliseeva G. M. Eliseeva , L. M. Kolchina L. M. Kolchina , G. N. Mazo G. N. Mazo
Российский электрохимический журнал
Abstract / Full Text

The electrochemical properties are studied for composite electrodes Pr1.95La0.05CuO4(PLCO)–xCe0.9Gd0.1O1.95(GDC), where x = 20, 30, 40, and 50 wt % GDC with the aim of finding the composition with the best electrochemical efficiency in the oxygen reduction reaction. Varying the temperature of sintering of the PLCO–xGDC electrode layer to the surface of GDC solid electrolyte shows that the minimum polarization resistance (Rη) is reached at the temperature of 850°C. For the PLCO–xGDC composition containing 40 wt % GDC, in the temperature range of 600–750°C, the maximum electrochemical activity in oxygen reduction reaction is observed as indicated by 10-fold decrease in Rη as compared with single-phase PLCO (from 0.87 (x = 0) to 0.08 Ω cm2 (x = 40) at 700°C in air). According to the data obtained, the PLCO–40GDC composite can be considered as a promising cathode material for intermediate temperature solid oxide fuel cells.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, 142432, Russia

    N. V. Lyskov, M. Z. Galin, N. B. Kostretsova & G. M. Eliseeva

  • Moscow State University, Faculty of Fundamental Physicochemical Engineering, Leninskie gory, Moscow, 119991, Russia

    N. B. Kostretsova & G. M. Eliseeva

  • Moscow State University, Faculty of Chemistry, Leninskie gory, 119992, Russia

    L. M. Kolchina & G. N. Mazo

  1. Gao, Z., Mogni, L.V., Miller, E.C., Railsback, J.G., and Barnett, S., A perspective on low-temperature solid oxide fuel cells, Energy Environ. Sci., 2016, vol. 9, p. 1602.
  2. Kilner, J.A. and Burriel, M., Materials for intermediate-temperature solid-oxide fuel cells, Annu. Rev. Mater. Res., 2014, vol. 44, p. 365.
  3. Lyskov, N.V., Kaluzhskikh, M.S., Leonova, L.S., Mazo, G.N., Istomin, S.Ya., and Antipov, E.V., Electrochemical characterization of Pr2CuO4 cathode for IT-SOFC, Int. J. Hydrogen Energy, 2012, vol. 37, p. 18357.
  4. Kolchina, L.M., Lyskov, N.V., Petukhov, D.I., and Mazo, G.N., Electrochemical characterization of Pr2CuO4–Ce0.9Gd0.1O1.95 composite cathodes for solid oxide fuel cells, J. Alloys Compd., 2014, vol. 605, p. 89.
  5. Sun, C., Li, Q., Sun, L., Zhao, H., and Huo, L., Characterization and electrochemical performances of Pr2CuO4 as a cathode material for intermediate temperature solid oxide fuel cells, Mat. Res. Bull., 2014, vol. 53, p. 65.
  6. Kolchina, L.M., Lyskov, N.V., Kazakov, S.M., Mazo, G.N., and Antipov, E.V., Drastic change of electrical conductivity in Pr2CuO4 by isovalent La doping, RSC Adv., 2015, vol. 5, p. 91993.
  7. Hayashi, H., Kanoh, M., Quan, C.J., Inaba, H., Wang, S., Dokiya, M., and Tagawa, H., Thermal expansion of Gd-doped ceria and reduced ceria, Solid State Ionics, 2000, vol. 132, p. 227.
  8. Chiba, R., Taguchi, H., Komatu, T., Orui, H., Nozawa, K., and Araiet, H., High temperature properties of Ce1 †xPrxO2 †δ as an active layer material for SOFC cathodes, Solid State Ionics, 2011, vol. 197, p. 42.
  9. Suda, E., Pacaud, B., and Mori, M., Sintering characteristics, electrical conductivity and thermal properties of La-doped ceria powders, J. Alloys Compd., 2006, vol. 408–412, p. 1161.
  10. Murray, E.P. and Barnett, S.A., (La,Sr)MnO3†(Ce,Gd)O2 †x composite cathodes for solid oxide fuel cells, Solid State Ionics, 2001, vol. 143, p. 265.
  11. Murray, E.P., Sever, M.J., and Barnett, S.A., Electrochemical performance of (La,Sr)(Co,Fe)O3†(Ce,Gd)O3 composite cathodes, Solid State Ionics, 2002, vol. 148, p. 27.
  12. Sun, L.-P., Zhao, H., Li, Q., Huo, L.-H., Viricelle, J.-P., and Pijolat, C., Study on Sm1.8Ce0.2CuO4–Ce0.9Gd0.1O1.95 composite cathode materials for intermediate temperature solid oxide fuel cell, Int. J. Hydrogen Energy, 2011, vol. 36, p. 12555.
  13. Dusastre, V. and Kilner, J.A., Optimisation of composite cathodes for intermediate temperature SOFC applications, Solid State Ionics, 1999, vol. 126, p. 163.
  14. Ullmann, H., Trofimenko, N., Tietz, F., Stover, D., and Ahmad-Khanlou, A., Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite-type oxides for SOFC cathodes, Solid State Ionics, 2000, vol. 138, p. 79.