Статья
2019

The Effect of Supports of Glassy–Carbon and Activated Graphite Foil on the Electrochemical Behavior of Composite Coatings Based on Polyaniline and Its N-Substituted Derivatives


V. V. Abalyaeva V. V. Abalyaeva , G. V. Nikolaeva G. V. Nikolaeva , E. N. Kabachkov E. N. Kabachkov , O. N. Efimov O. N. Efimov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193519080020
Abstract / Full Text

Hybrid polymer nanomaterials are synthesized based on polyaniline (PAni) and its N-substituted derivative poly-3,6-dianiline-2,5-dichloro-1,4-benzoquinone (PDADCB) in combination with graphene oxide (GO). The electrochemical properties of electrodes formed by a composite polymer coatings based on PAni or PDADCB (combined with GO) and supported by glassy carbon and activated graphite foil (AGF) are studied. It is shown that the electron-conducting nanocomposite structure formed on the AGF foil has the electrochemical capacitance higher than 100 F/g and exhibits stable capacitance characteristics in a substantially extended potential interval in a protonic (1 М H2SO4) electrolyte.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    V. V. Abalyaeva, G. V. Nikolaeva, E. N. Kabachkov & O. N. Efimov

References
  1. Chen, W. and Mu, Sh., The electrocatalytic oxidative polymerizations of aniline and aniline derivatives by grapheme, Electrochim. Acta, 2011, vol. 56, p. 2284.
  2. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A., Electric field effect in atomically thin carbon films, Science, 2004, vol. 306, p. 666.
  3. Peigney, A., Laurent, C., Flahaut, E., Bacsa, R.R., and Rousset, A., Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon, 2001, vol. 39, p. 507.
  4. Geim, A.K. and Novoselov, K.S., The rise of graphene, Nat. Mater. 2007, vol. 6, p. 183.
  5. Hong, W.J., Bai, H., Xu, Y.X., Yao, Z.Y., Gu, Z.Z., and Shi, G.Q., Preparation of gold nanoparticle graphene composites with controlled weight contents and their application in biosensors, J. Phys. Chem. C, 2010, vol. 114, p. 1822.
  6. Wang, L., Tian, C.G., Wang, H., Ma, Y.G., Wang, B.L., and Mass H.G., Production of graphene via an in situ self-generating template route and its promoted activity as electrocatalytic support for methanol electroxidization, J. Phys. Chem. C., 2010, vol. 114, p. 8727.
  7. Hong, W.J., Xu, Y.X., Lu, G.W., Li, C., and Shi, G.Q., Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells, Electrochem. Commun., 2008, vol. 10, p. 1555.
  8. Choi, D.W., Wang, D.H., Viswanathan, V.V., Bae, I.T., Wang, W., Nie, Z.M., Zhang, J.G., Graff, G.L., Liu, J., Yang, Z.G., and Duong, T., Li-ion batteries from LiFePO4 cathode and anatase/graphene composite anode for stationary energy storage, Electrochem. Commun., 2010, vol. 12, p. 378.
  9. Zhao, L., Zhao, L., Xu, Y.X., Qiu, T.F., Zhi, L.J., and Shi, G.Q., Polyaniline electrochromic devices with transparent graphene electrodes, Electrochim. Acta, 2009, vol. 55, p. 491.
  10. Gilje, S., Han, S., Wang, M.S., Wang, K.L., and Kaner, R.B., A chemical route to graphene for device applications, Nano Lett., 2007, vol. 7, p. 3394.
  11. Shornikova, O.N., Kogan, E.V., Sorokina, N.E., and Avdeev, V.V., The specific surface area and porous structure of graphite materials, Russ. J. Phys. Chem. A., 2009. vol. 83, no. 6. p. 1022.
  12. Abalyaeva, V.V., Nikolaeva, G.V., Kabachkov, E.N., Kiseleva, S.G., Orlov, A.V., Efimov, O.N., and Karpacheva, G.P., Obtainment and comparative study of electrochemical behavior of composite electrodes based on polyaniline and its N-substituted derivatives, Polym. Sci., Ser. B, 2018, vol. 60, no. 6, p. 777.https://doi.org/10.1134/S1560090418060015
  13. Gu, H., Su, X., and Loh, K.P., Electrochemical impedance sensing of DNA hybridization on conducting polymer film-modified diamond, J. Phys. Chem. B, 2005, vol. 109, p. 13  611.
  14. Patil, D.S., Pawar, S.A., Devan, R.S., Mal, S.S., Gang, M.G., Ma, Y.R., Hong, C.K, Kim, J.H., and Patil, P.S., Polyaniline based electrodes for electrochemical supercapacitor: Synergistic effect of silver, activated carbon and polyaniline, J. Electroanal. Chem., 2014, vol. 724, p. 21.
  15. Zhaoa, B., Liua, P.,Jianga, Y., Taob, H., Songa, J., Fanga, T., and Xua, W., Supercapacitor performances of thermally reduced graphene oxide, J. Power Sources, 2012, vol. 198, p. 423.
  16. Kieffel, Ya., Travers, J.P., Ermolieff, A., and Rouchon, D., Effect of chemical degradation on electrical properties, J. Appl. Polym. Sci., 2002, vol. 86, p. 395.
  17. Lindfors, T., Kvarnström, C., and Ivaska, A., Raman and UV–vis spectroscopic study of polyaniline membranes containing a bulky cationic additive, J. Electroanal. Chem., 2002, vol. 518, is. 2, p. 131.
  18. Dhibar, S., Sahoo, S., and Das, C.K., Copper chloride-doped polyaniline/multiwalled carbon nanotubes nanocomposites: Superior electrode material for supercapacitor applications, Polym. Compos., 2013, vol. 34, is. 4, p. 517.
  19. Refat, M.S., Ibrahim, O.B., Al-Didamony, H., El-Noir, K.M.A., and El-Zayat, L., Spectroscopic and thermal studies on the charge transfer complexes formed between morpholine as donor with p-chloranil and 7,7′,8,8′-tetracyanoquinodimethane, J. Saudi Chem. Soc., 2012, vol. 16, p. 227.
  20. Qiu-Feng, L., Huang, M.-R., and Li, X.-G., Synthesis and heavy metal ion sorption of pure sulfophenylenediamine copolymer nanoparticles with intrinsic conductivity and stability, Chem. – Eur. J., 2007, vol. 13, p. 6009.
  21. Trchova, M., Moravkova, Z., Blaha, M., and Stejskal, J., Raman spectroscopy of polyaniline and oligoaniline thin films, Electrochim. Acta, 2014, vol. 122, p. 28.
  22. Wang, Y., Wu, X., Zhang, W., Li, J., Luo, Ch., and Wang, Q., Fabrication and enhanced electromagnetic wave absorption properties of sandwich-like graphene @ NiO @ PANI decorated with Ag particles, Synth. Met., 2017, vol. 229, p. 82.
  23. Trchova, M. and Stejskal, Ja., Polyaniline: The infrared spectroscopy of conducting polymer nanotubes, Pure Appl. Chem., 2011, vol. 83, p. 1803.