Peculiarities of Morphology of Tin Microcrystals Electroplated under Galvanostatic Conditions

K. K. Kudasheva K. K. Kudasheva , I. S. Yasnikov I. S. Yasnikov , M. V. Dorogov M. V. Dorogov
Российский электрохимический журнал
Abstract / Full Text

Specific features of morphology of structure of tin microcrystals, which form during the electrodeposition under the galvanostatic conditions on the indifferent substrate, are studied. The corresponding experimental data are presented. Possible mechanisms for the formation of the morphological forms are discussed.

Author information
  • Togliatti State University, 445020, Togliatti, Samara oblast, Russia

    K. K. Kudasheva & I. S. Yasnikov

  • ITMO University, 197101, St. Petersburg, Russia

    M. V. Dorogov

  1. Gamburg, Yu.D., Electroplated Coatings. Application Guide, Moscow: Technosfera, 2006, p. 128.
  2. Marshall, K.P., Walker, M., Walton, R.I., and Hatton, R.A., Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics, Nat. Energy, 2016, vol. 1, p. 16178.
  3. Shum, K. and Tsatskina, A., Solar cells: Stabilizing tin-based perovskites, Nat. Energy, 2016, vol. 1, p. 16188.
  4. Tianhao, W., Xiao, L., Xin, H., Yanbo, W., Xiangyue, M., Takeshi, N., Xudong, Y., and Liyuan, H., Efficient and stable tin-based perovskite solar cells by introducing π‑conjugated Lewis base, Sci. China Chem., 2020, vol. 63, no. 1, p. 107.
  5. Parthibavarman, M., Sathishkumar, S., Prabhakaran, S., Jayashree, M., and BoopathiRaja, R., High visible light-driven photocatalytic activity of large surface area Cu doped SnO2 nanorods synthesized by novel one-step microwave irradiation method, J. Iranian Chem. Soc., 2018, vol. 15, p 2789.
  6. Na, Q, Kaiqiang, J., Rui, C., Jinhua, X., Ruowen, L., Zhaohui, L., and Ling, W., SnS2 nanoplates/SnO2 nanotubes composites as efficient visible light-driven photocatalysts for Cr(VI) reduction, Res. Chem. Intermed., 2017, vol. 43, p. 5217.
  7. Zhang, Y.C., Yao, L., Zhang, G., Dionysiou, D.D., Li, J., and Du, X., One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI), Appl. Catal. B: Environmental, 2014, vol. 144, p. 730. https://doi.org/10.1016/j.apcatb.2013.08.006
  8. Li, Q., Rao, X., Sheng, J., Xu, J., Yi, J., Liu, Y., and Zhang J., Energy storage through CO2 electroreduction: A brief review of advanced Sn-based electrocatalysts and electrodes, J. CO 2 Utilization, 2018, vol. 27, p. 48. https://doi.org/10.1016/j.jcou.2018.07.004
  9. Zheng, Y., Zhou, T., Zhang, C., Mao, J., Liu, H., and Guo, Z., Boosted charge transfer in SnS/SnO2 heterostructures: Toward high rate capability for sodium-ion batteries, Angew. Chem. Int. Ed., 2016, vol. 55, no. 10, p. 3408. https://doi.org/10.1002/anie.201510978
  10. Wu, N., Jia, T., Shi, Y.-R., Yang, Y.-J., Li, T.H., Li, F., and Wang, Z., High-performance Sn-based metal-organic frameworks anode materials synthesized by flexible and controllable methods for lithium-ion batteries, Ionics, 2019, vol. 26, no. 9, p. 1. https://doi.org/10.1007/s11581-019-03392-9
  11. Janish, M.T., Mackay, D.T., Liu, Y., Jungjohann, K.L., Carter, C.B., and Norton, M.G. TEM in situ lithiation of tin nanoneedles for battery applications, J. Mater. Sci., 2015, vol. 51, no.1, p. 589. https://doi.org/10.1007/s10853-015-9318-0
  12. Masteghin, M.G., Bertinotti, R.C., and Orlandi, M.O., Coalescence growth mechanism of inserted tin dioxide belts in polycrystalline SnO2-based ceramics, Mater. Charact., 2018, vol. 142, p. 289. https://doi.org/10.1016/j.matchar.2018.05.027
  13. Masteghin, M.G., Varela, J.A., and Orlandi, M.O., Controlling the breakdown electric field in SnO2 based varistors by the insertion of SnO2 nanobelts, J. Eur. Ceram. Soc., 2017, vol. 37, no. 4, p. 1535. https://doi.org/10.1016/j.jeurceramsoc.2016.12.018
  14. Gamburg, Yu.D., Electrochemical Crystallization of Metals and Alloys, Moscow: Yanus-K, 1997.
  15. Yasnikov, I.S., Gamburg, Yu.D., and Prokhorov, P.E., Peculiarities of morphology of silver microcrystals electroplated under potentiostatic conditions from ammonium solutions, Russ. J. Electrochem., 2010, vol. 46, p. 524.
  16. Yasnikov, I.S. and Denisova, D.A., Transformation of the habitus of electrolytic copper microcrystals with inhibition of the growth of low-energy facets, JETP Letters, 2012, vol. 95, p. 246.
  17. Yasnikov, I.S. and Denisova, D.A., Specific features of the evolution of electrolytic copper microcrystals with inhibition of the growth of low-energy facets, Phys. Solid State, 2013, vol. 55, p. 642.
  18. Galenko, P.K. and Zhuravlev, V.A., Physics of Dendrites, London: World Sci., 1994.
  19. Hu, P., Dorogov, M., Xin, Y., and Aifantis, K.E., Transforming single-crystal CuO/Cu2O nanorods into nano-polycrystalline Cu/Cu2O through lithiation, ChemElectroChem, 2019, vol. 6, no. 12, p. 3139. https://doi.org/10.1002/celc.201900564