Статья
2020

Benzimidazo[1',2':1,2]Quinolino[4,3-b][1,2,5]Oxodiazolo[3,4-f]Quinoxaline—New Mediator for Electrosynthesizing Metal Nanoparticles


V. V. Yanilkin V. V. Yanilkin , R. R. Fazleeva R. R. Fazleeva , G. R. Nasretdinova G. R. Nasretdinova , Yu. N. Osin Yu. N. Osin , N. A. Zhukova N. A. Zhukova , V. A. Mamedov V. A. Mamedov
Российский электрохимический журнал
https://doi.org/10.1134/S1023193520080066
Abstract / Full Text

Spherical silver nanoparticles (NP-Ag) stabilized in shells of poly(N-vinylpyrrolidone) (PVP) are synthesized electrochemically by the benzimidazo[1',2':1,2]quinolino[4,3-b][1,2,5]oxodiazolo[3,4-f]quinoxaline (BIQOQ)-mediated reduction of Ag+ ions in the presence of PVP and cellulose nanofibers (NC) at the potential controlled at the BIQOQ generation in the DMF/0.1 M Bu4NBF4 medium at room temperature. The mediator is not consumed in this process, the generated metal is not deposited on the cathode, being formed in solution volume in the quantitative yield corresponding to the theoretical quantity of electricity passed. The synthesized products represent cellulose nanofibers decorated most compactly with silver nanoparticles covered by PVP shells Ag@PVP/NC. The size of NP-Ag in Ag@PVP/NC (11 ± 3 nm) is much lower as compared with the Ag@PVP nanocomposite synthesized by the methyl-viologen‑mediated reduction of Ag+ ions under similar conditions in the absence of NC (20 ± 7 nm). The synthesized nanocomposite exhibits catalytic activity in the reactions of reduction of nitroaromatic compounds by sodium borohydride in aqueous media.

Author information
  • Arbuzov Institute of Organic and Physical Chemistry, Kazan Research Center, Russian Academy of Sciences, 420088, Kazan, Russia

    V. V. Yanilkin, R. R. Fazleeva, G. R. Nasretdinova, N. A. Zhukova & V. A. Mamedov

  • Kazan (Volga Region) Federal University, Interdisciplinary Center “Analytical Microscopy”, 420018, Kazan, Russia

    Yu. N. Osin

References
  1. Baizer, M.M., Organic Electrochemistry: an Introduction and a Guide, New York: M. Dekker, 1973.
  2. Efimov, O.N. and Strelets, V.V., Metal complex catalysis of electrode processes, Russ. Chem. Rev., 1988, vol. 57, p. 129.
  3. Francke, R. and Little, R.D., Redox catalysis in organic electrosynthesis: basic principles and recent developments, Chem. Soc. Rev., 2014, vol. 43, p. 2492.
  4. Yanilkin, V.V., Maksimyuk, N.I., and Strunskaya, E.I., The binary mediator system consisting of organic electron carrier and metal ions in the reactions of electrochemical reduction of bromo- and chloroorganic compounds, Russ. J. Electrochem., 1996, vol. 32, p. 120.
  5. Yanilkin, V.V., Nasretdinova, G.R., and Kokorekin, V.A., Mediated electrochemical synthesis of metal nanoparticles, Russ. Chem. Rev., 2018, vol. 87, p. 1080.
  6. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Osin, Y.N., Evtugyn, V.G., Ziganshina, A.Y., and Gubaidullin, A.T., Structure and catalytic activity of ultrasmall Rh, Pd and (Rh + Pd) nanoparticles obtained by mediated electrosynthesis, New J. Chem., 2019, vol. 43, p. 3931.
  7. Mamedov, V.A., Zhukova, N.A., Kadyrova, M.S., Fazleeva, R.R., Bazanova, O.B., Beschastnova, T.N., Gubaidullin A.T., Rizvanov, I.K., Yanilkin, V.V., Latypov, S.K., and Sinyashin, O.G., Environmentally friendly and efficient method for the synthesis of the new α,α'-diimine ligands with benzimidazole moiety, J. Heterocycl. Chem., 2019 (in press).
  8. Hassner, A. and Namboothiri, I.,Organic Syntheses Based on Name Reactions, 3th ed., Amsterdam: Elsevier, 2012, p. 299.
  9. Mamedov, V.A., Quinoxalines. Synthesis, Reactions, Mechanisms and Structure, Switzerland: Springer, 2016.
  10. Mamedov, V.A. and Zhukova, N.A., Progress in quinoxaline synthesis (Part 2), in Progress in Heterocyclic Chemistry, Gribble, G.W. and Joule, J.A., Eds., Amsterdam: Elsevier, 2013, vol. 25, p. 1.
  11. Mamedov, V.A., Recent advances in the synthesis of benzimidazol(on)es via rearrangements of quinoxalin(on)es, RSC Adv., 2016, vol. 6, p. 42132.
  12. Mamedov, V.A. and Murtazina, A.M., Recyclization reactions leading to benzimidazoles. Russ. Chem. Rev., 2011, vol. 80, p. 397.
  13. Yanilkin, V.V., Nasybullina, G.R., Sultanova, E.D., Ziganshina, A.Yu., and Konovalov, A.I., Methyl viologen and tetraviologen calix[4]resorcinol as mediators of the electrochemical reduction of [PdCl4]2– with formation of finely dispersed Pd0, Russ. Chem. Bull., 2014, vol. 63, 1409.
  14. Nasretdinova, G.R., Fazleeva, R.R., Mukhitova, R.K., Nizameev, I.R., Kadirov, M.K., Ziganshina, A.Y., and Yanilkin, V.V., Electrochemical synthesis of silver nanoparticles in solution, Electrochem. Commun., 2015, vol. 50, p. 69.
  15. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fazleeva, R.R., Toropchina, A.V., and Osin, Y.N., Methylviologen mediated electrochemical reduction of AgCl—A new route to produce a silica core/Ag shell nanocomposite material in solution, Electrochem. Commun., 2015, vol. 59, p. 60.
  16. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Mukhitova, R.K., Ziganshina, A.Yu., Nizameev, I.R., and Kadirov, M.K., Mediated electrochemical synthesis of Pd0 nanoparticles in solution, Russ. J. Electrochem., 2015, vol. 51, p. 951.
  17. Nasretdinova, G.R., Fazleeva, R.R., Mukhitova, R.K., Nizameev, I.R., Kadirov, M.K., Ziganshina, A.Yu., and Yanilkin, V.V., Electrochemical mediated synthesis of silver nanoparticles in solution, Russ. J. Electrochem., 2015, vol. 51, p. 1029.
  18. Fedorenko, S., Jilkin, M., Nastapova, N., Yanilkin, V., Bochkova, O., Buriliov, V., Nizameev, I., Nasretdinova, G., Kadirov, M., Mustafina, A., and Budnikova, Y., Surface decoration of silica nanoparticles by Pd(0) deposition for catalytic application in aqueous solutions, Colloids Surf., A, 2015, vol. 486, p. 185.
  19. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fedorenko, S.V., Jilkin, M.E., Mustafina, A.R., Gubaidullin A.T., and Osin, Y.N., Methylviologen mediated electrosynthesis of gold nanoparticles in the solution bulk, RSC Advances., 2016, vol. 6. p. 1851.
  20. Nasretdinova, G.R., Osin, Y.N., Gubaidullin, A.T., and Yanilkin, V.V. Methylviologen mediated electrosynthesis of palladium nanoparticles stabilized with CTAC, J. Electrochem. Soc., 2016, vol. 163, p. G99.
  21. Yanilkin, V.V., Fazleeva, R.R., Nasretdinova, G.R., Nastapova, N.V., and Osin, Yu.N., The role of solvent in methylviologen mediated electrosynthesis of silver nanoparticles stabilized with polyvinylpyrrolidone, Butlerov Commun., 2016, vol. 46, p. 128.
  22. Nasretdinova, G.R., Fazleeva, R.R., Osin, Y.N., Gubaidullin, A.T., and Yanilkin, V.V., Methylviologen mediated electrochemical synthesis of silver nanoparticles by reduction of AgCl nanospheres stabilized with cetyltrimethylammonium chloride, Russ. J. Electrochem., 2017, vol. 53, p. 31.
  23. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fazleeva, R.R., Fedorenko, S.V., Mustafina, A.R., and Osin, Yu.N., Methylviologen-mediated electrochemical synthesis of platinum nanoparticles in solution bulk, Russ. J. Electrochem., 2017, vol. 53, p. 509.]
  24. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., and Osin, Yu.N., Electrosynthesis of gold nanoparticles mediated by methylviologen using a gold anode in single compartment cell, Mendeleev Commun., 2017, vol. 27, p. 274.
  25. Kokorekin, V.A., Gamayunova, A.V., Yanilkin, V.V., and Petrosyan, V. A., Mediated electrochemical synthesis of copper nanoparticles in solution bulk, Russ. Chem. Bull., 2017, vol. 66, no. 11, p. 2035.
  26. Yanilkin, V.V., Fazleeva, R.R., Nasretdinova, G.R., Nastapova, N.V., and Osin, Y.N., Methylviologen mediated electrosynthesis of silver nanoparticles in a water medium. Effect of chain length and concentration of poly(N-vinylpyrrolidone) on particle size, New Mater.,Compd. Appl., 2018, vol. 2, no. 1, p. 28.
  27. Nasretdinova, G.R., Fazleeva, R.R., Osin, Yu.N., Evtugin, V.G., Gubaidullin, A.T., Ziganshina, A.Yu., and Yanilkin, V.V., Methylviologen Mediated Electrochemical Synthesis of Catalytically Active Ultrasmall Pd–Ag Bimetallic Nanoparticles Stabilized by CTAC, Electrochim. Acta, 2018, vol. 285, p. 149.
  28. Yanilkin, V.V., Nasybullina, G.R., Ziganshina, A.Y., Nizamiev, I.R., Kadirov, M.K., Korshin, D.E., and Konovalov, A.I., Tetraviologen calix[4]resorcine as a mediator of the electrochemical reduction of [PdCl4]2– for the creation of nanoparticles Pd(0), Mendeleev Commun., 2014, vol. 24, no. 2, p. 108.
  29. Yanilkin, V.V., Nastapova, N.V., Sultanova, E.D., Nasretdinova, G.R., Mukhitova, R.K., Ziganshina, A.Yu., Nizameev, I.R., and Kadirov, M.K., Electrochemical synthesis of nanocomposite of palladium nanoparticles with polymer viologen-containing nanocapsule, Russ. Chem. Bull, 2016, vol. 65, no. 1, p. 125.
  30. Yanilkin, V.V., Nastapova, N.V., Fazleeva, R.R., Nasretdinova, G.R., Sultanova, E.D., Ziganshina, A.Yu., Gubaidullin, A.T., Samigullina, A.I., Evtugin, V.G., Vorobev, V.V., and Osin, Yu.N., Electrochemical synthesis of metal nanoparticles using a polymeric mediator, whose reduced form is adsorbed (deposited) on an electrode, Russ. Chem. Bull., 2018, vol. 67, p. 215.
  31. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fazleeva, R.R., and Osin, Yu.N., Molecular oxygen as a mediator in the electrosynthesis of gold nanoparticles in DMF, Electrochem. Commun., 2016, vol. 69, p. 36.
  32. Yanilkin, V.V., Nastapova, N.V., Fazleeva, R.R., Nasretdinova, G.R., Sultanova, E.D., Ziganshina, A.Yu., Gubaidullin, A.T., Samigullina, A.I., Evtyugin, V.G., Vorob’ev, V.V., and Osin, Yu.N., Molecular oxygen as mediator in the metal nanoparticles’ electrosynthesis in N,N-dimethylformamide, Russ. J. Electrochem., 2018, vol. 54, p. 265.
  33. Yanilkin, V.V., Nasretdinova, G.R., Osin, Y.N., and Salnikov, V.V., Anthracene mediated electrochemical synthesis of metallic cobalt nanoparticles in solution, Electrochim. Acta, 2015, vol. 168, p. 82.
  34. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Osin, Yu.N., and Gubaidullin, A.T., Fullerene mediated electrosynthesis of Au/C60 nanocomposite, ECS J. Solid State Sci. Technol., 2017, vol. 6, no. 4, p. M19.
  35. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fazleeva, R.R., Samigullina, A.I., Gubaidullin, A.T., Ivshin, Y.V., Evtyugin, V.G., and Osin, Y.N., Fullerene-mediated electrosynthesis of Ag–C60 nanocomposite in a water-organic two-phase system, Mendeleev Commun., 2017, vol. 27, p. 577.
  36. Yanilkin, V.V., Nastapova, N.V., Nasretdinova, G.R., Fazleeva, G.M., Islamova, L.N., Osin, Yu.N., and Gubaidullin, A.T., Mediated electrosynthesis of nanocomposites: Au nanoparticles in matrix of C70 and some derivatives of C60 fullerene, ECS J. Solid State Sci. Technol., 2017, vol. 6, no. 12, p. M143.
  37. Yanilkin, V.V., Fazleeva, R.R., Nasretdinova, G.R., Nastapova, N.V., and Osin, Yu.N., Fullerene mediated electrosynthesis of silver nanoparticles in toluene-DMF, J. Solid State Sci. Technol., 2018, vol. 7, no. 4, p. M55.
  38. Yanilkin, V.V., Fazleeva, R.R., Nastapova, N.V., Nasretdinova, G.R., Gubaidullin, A.T., Berezin, N.B., and Osin, Yu.N., Studies of cobalt(III) and chromium(III) complexes as mediators in the silver nanoparticle electrosynthesis in aqueous media, Russ. J. Electrochem., 2018, vol. 54, p. 650.
  39. Suh, M.P., Metal-organic frameworks and porous coordination polymers: Properties and applications, Bull. Jpn. Soc. Coord. Chem., 2015, vol. 65, p. 9.
  40. Caia, X., Denga, X., Xiea, Z., Shia, Y., Panga, M., and Lina, J., Controllable synthesis of highly monodispersed nanoscale Fe-soc-MOF and the construction of Fe-soc-MOF@polypyrrole core-shell nanohybrids for cancer therapy, Chem. Eng. J., 2018, vol. 358, p. 369.
  41. Gao, X.W., Yang, J., Song, K., Luo, W.B., Dou, S.X., and Kang, Y.M., Robust FeCo nanoparticles embedded in a N-doped porous carbon framework for high oxygen conversion catalytic activity in alkaline and acidic media, J. Mater. Chem. A, 2018, vol. 46, no. 6, p. 23445.
  42. Sun, Q., Zhai, W., Hou, G., Feng, J., Zhang, L., Si, P., Guo, S., and Ci, L., In situ synthesis of a lithiophilic Ag-nanoparticles-decorated 3D porous carbon framework toward dendrite-free lithium metal anodes, ACS Sustainable Chem. Eng., 2018, vol. 11, no. 6, p. 15219.
  43. Zhang, S., Wu, Q., Tang, L., Hu, Y., Wang, M., Zhao, J., Li, M., Han, J., Liu, X., and Wang, H., Individual high-quality N-doped carbon nanotubes embedded with nonprecious metal nanoparticles toward electrochemical reaction, ACS Appl. Mater. Interfaces, 2018, vol. 46, no. 10, p. 39757.
  44. Wua, Y., Qiua, X., Lianga, F., Zhanga, Q., Kooc, A., Dai, Y., Lei, Y., and Sunc, X., A metal-organic framework-derived bifunctional catalyst for hybrid sodium-air batteries, Appl. Catal., B, 2019, vol. 241, p. 407.
  45. Wu, T., Ma, J., Wang, X., Liu, Y., Xu, H., Gao, J., Wang, W., Liu, Y., and Yan, J., Graphene oxide supported Au–Ag alloy nanoparticles with different shapes and their high catalytic activities, Nanotechnology, 2013, vol. 24, no. 12, p. 125301.
  46. Gan, T., Wang, Z., Shi, Z., Zheng, D., Sun, J., and Liu, Y., Graphene oxide reinforced core–shell structured Ag@Cu2O with tunable hierarchical morphologies and their morphology–dependent electrocatalytic properties for bio-sensing applications, Biosens. Bioelectron., 2018, vol. 112, p. 23.
  47. Wang, L., Wang, L., Zhang, J., Wang, H., and Xiao, F.-S., Enhancement of the activity and durability in CO oxidation over silica-supported Au nanoparticle catalyst via CeOx modification, Chin. J. Catal., 2018, vol. 39, p. 1608.
  48. Eremenko, A., Smirnova, N., Gnatiuk, I., Linnik, O., Vityuk, N., Mukha, Y.,and Korduban, A., Silver and gold nanoparticles on sol–gel TiO2, ZrO2, SiO2 surfaces: optical spectra, photocatalytic activity, bactericide properties, in Nanocomposites and Polymers with Analytical Methods, Cuppoletti J., Ed., Croatia: InTech, 2011, p. 404.
  49. An, K. and Somorjai, G.A., Nanocatalysis I: Synthesis of metal and bimetallic nanoparticles and porous oxides and their catalytic reaction studies, Catal. Lett., 2015, vol. 145, p. 233.
  50. Majhi, S.M., Naik, G.K., Lee, H.-J., Song, H.-G., Lee, C.-R., Lee, I.-H., and Yu, Y.-T., Au@NiO core-shell nanoparticles as a p-type gas sensor: Novel synthesis, characterization, and their gas sensing properties with sensing mechanism, Sens. Actuators, B, 2018, vol. 268, p. 223.
  51. Liu, J., Zou, S., Li, S., Liao, X., Hong, Y., Xiao, L., and Fan, J., A general synthesis of mesoporous metal oxides with well-dispersed metal nanoparticles via a versatile sol–gel process, J. Mater. Chem. A, 2013, vol. 1, p. 4038.
  52. Padbury, R.P., Halbur, J.C., Krommenhoek, P.J., Tracy, J.B., and Jur, J.S., Thermal stability of gold nanoparticles embedded within metal oxide frameworks fabricated by hybrid modifications onto sacrificial textile templates, Langmuir, 2015, vol. 31, no. 3, p. 1135.
  53. Rajender Reddy, K., Kumar, N.S., Surendra Reddy, P., Sreedhar, B., and Lakshmi Kantam, M., Cellulose supported palladium(0) catalyst for Heck and Sonogashira coupling reactions, J. Mol. Catal. A: Chem., 2006, vol. 252, p. 12.
  54. Koga, H., Tokunaga, E., Hidaka, M., Umemura, Y., Saito, T., Isogai, A., and Kitaoka, T., Topochemical synthesis and catalysis of metal nanoparticles exposed on crystalline cellulose nanofibers, Chem. Commun., 2010, vol. 46. p. 8567.
  55. Cirtiu, C.M., Dunlop-Brière, A.F., and Moores, A., Cellulose nanocrystallites as an efficient support for nanoparticles of palladium: application for catalytic hydrogenation and Heck coupling under mild conditions, Green Chem., 2011, vol. 13, no. 2, p. 288.
  56. Lam, E., Hrapovic, S., Majid, E., Chong, J.H., and Luong, J.H.T., Catalysis using gold nanoparticles decorated on nanocrystalline cellulose, Nanoscale, 2012, vol. 4, no. 3, p. 997.
  57. Tang, J., Shi. Z., Berry, R.M., and Tam, K.C., Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin, Ind. Eng. Chem. Res., 2015, vol. 54, p. 3299.
  58. Kaushik, M. and Moores, A., Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis, Green Chem., 2016, vol. 18, p. 622.
  59. Chen, L., Cao, W., Quinlan, P.J., Berry, R.M., and Tam, K.C., Sustainable catalysts from gold-loaded polyamidoamine dendrimer-cellulose nanocrystals, ACS Sustainable Chem. Eng., 2015, vol. 3, p. 978.
  60. Tang, J., Sisler, J., Grishkewich, N., and Tam, K.C., Functionalization of cellulose nanocrystals for advanced applications, J. Colloid Interface Sci., 2017, vol. 494, p. 397.
  61. Eisa, W.H., Abdelgawad, A.M., and Rojas, O.J., Solid-state synthesis of metal nanoparticles supported on cellulose nanocrystals and their catalytic activity, ACS Sustainable Chem. Eng., 2018, vol. 6, no. 3, p. 3974.
  62. Liu, H., Wang, D., Shang, S., and Song, Z., Synthesis and characterization of Ag–Pd alloy nanoparticles/carboxylated cellulose nanocrystals nanocomposites, Carbohydr. Polym., 2011, vol. 83, no. 1, p. 38.
  63. Liu, H., Wang, D., Song, Z., and Shang, S., Preparation of silver nanoparticles on cellulose nanocrystals and the application in electrochemical detection of DNA hybridization, Cellulose, 2011, vol. 18, no. 1, p. 67.
  64. Schlesinger, M., Giese, M., Blusch, L.K., Hamad, W.Y., and MacLachlan, M.J., Chiral nematic cellulose-gold nanoparticle composites from mesoporous photonic cellulose, Chem. Commun., 2015, vol. 51, p. 530.
  65. Zhang, T., Wang, W., Zhang, D., Zhang, X., Ma, Y., Zhou, Y., and Qi, L., Biotemplated synthesis of gold nanoparticle–bacteria cellulose nanofiber nanocomposites and their application in biosensing, Adv. Funct. Mater., 2010, vol. 20, p. 1152.
  66. Wang, W., Zhang, T.J., Zhang, D.W., Li, H.Y., Ma, Y.R., Qi, L.M., Zhou, Y.L., and Zhang, X.X., Amperometric hydrogen peroxide biosensor based on the immobilization of heme proteins on gold nanoparticles-bacteria cellulose nanofibers nanocomposite, Talanta, 2011, vol. 84, p. 71.
  67. Drogat, N., Granet, R., Sol, V., Memmi, A., Saad, N., Koerkamp, C.K., Bressollier, P., and Krausz, P., Antimicrobial silver nanoparticles generated on cellulose nanocrystals, J. Nanoparticle Res., 2011, vol. 13, no. 4, p. 1557.
  68. Berndt, S., Wesarg, F., Wiegand, C., Kralisch, D., and Müller, F.A., Antimicrobial porous hybrids consisting of bacterial nanocellulose and silver nanoparticles, Cellulose, 2013, vol. 20, p. 771.
  69. Padalkar, S., Capadona, J.R., Rowan, S.J., Weder, C., Won, Y.-H., Stanciu, L.A., and Moon, R.J., Natural biopolymers: Novel templates for the synthesis of nanostructures, Langmuir, 2010, vol. 26, no. 11, p. 8497.
  70. Shin, Y., Bae, I.T., Arey, B.W., and Exarhos, G.J., Simple preparation and stabilization of nickel nanocrystals on cellulose nanocrystal, Mater. Lett., 2007, vol. 61, p. 3215.
  71. Shin, Y., Bae, I.T., Arey, B.W., and Exarhos, G.J., Facile stabilization of gold-silver alloy nanoparticles on cellulose nanocrystal, J. Phys. Chem., C., 2008, vol. 112, no. 13, p. 4844.
  72. Majoinen, J., Hassinen, J., Haataja, J. S., Rekola, H.T., Kontturi, E., Kostiainen, M. A., and Ikkala, O., Chiral plasmonics using twisting along cellulose nanocrystals as a template for gold nanoparticles, Adv. Mater., 2016, vol. 28, p. 5262.
  73. Wei, H., Rodriguez, K., Renneckar, S., Lenga, W., and Vikesland, P.J., Preparation and evaluation of nanocellulose–gold nanoparticle nanocomposites for SERS applications, Analyst, 2015, vol. 140, p. 5640.
  74. Suzdalev, I.P., Nanotekhnologiya: Fiziko-khimiya nanoklasterov, nanostruktur i nanomaterialov (2-e izd) (Nanotechnology. Physicochemistry of nanoclusters, nanostructures and nanomaterials, 2nd ed.), Moscow: KomKniga, 2006.
  75. Kharisov, B.I., Kharissova, O.V., and Ortiz-Mendez, U., Handbook of Less-common Nanostructures, CRC Press, 2012.
  76. Hervés, P., Pérez-Lorenzo, M., Liz-Marzán, L.M., Dzubiella, J., Lu, Y., and Ballauff, M., Catalysis by metallic nanoparticles in aqueous solution: model reactions, Chem. Soc. Rev., 2012, vol. 41, p. 5577.
  77. Gu, S., Wunder, S., Lu, Y., Ballauff, M., Rademann, K., Fenger, R., Jaquet, B., and Zaccone, A., Kinetic analysis of the catalytic reduction of 4-nitrophenol by metallic nanoparticles, J. Phys. Chem. C., 2014, vol. 118, p. 18618.
  78. Yanilkin, V.V., Fazleeva, R.R., Nasretdinova, G.R., Osin, Yu.N., Gubaidullin, A.T., and Ziganshina, A.Yu., Two-step one-pot electrosynthesis and catalytic activity of the CoO–CoO•– H2O supported silver nanoparticles, submitted for publication in J. Solid State Electrochem., 2019, vol. 24, p. 829.