Synthesis and Properties of Ion-Exchange Membranes Based on Porous Polytetrafluoroethylene and Sulphonated Polystyrene

K. S. Novikova K. S. Novikova , E. F. Abdrashitov E. F. Abdrashitov , D. A. Kritskaya D. A. Kritskaya , A. N. Ponomarev A. N. Ponomarev , E. A. Sanginov E. A. Sanginov , Yu. A. Dobrovol’skii Yu. A. Dobrovol’skii
Российский электрохимический журнал
Abstract / Full Text

Novel ion-exchange membranes based on a commercial porous polytetrafluoroethylene film and sulfonated polystyrene are synthesized. To form porous polytetrafluoroethylene–polystyrene composites, thermal polymerization of styrene sorbed in the pores of the matrix-film from the monomer solution is used. The use of porous matrix makes it possible effectively obtaining the composites, used as precursors of the ion-exchange membranes. The sulfonating of the porous polytetrafluoroethylene–polystyrene composites forms the membranes with ion-exchange capacity up to 2.8 mmol/g. The composition and ground physicochemical properties of the new proton-conducting composite membranes are investigated. The developed membranes were shown to have good transport properties. The proton conductivity of water-saturated membranes is as high as 0.13 S/cm at room temperature; the hydration number is 30. Comparative tests of the synthesized membranes and the commercial Nafion-115 membrane in a direct methanol fuel cell at 60°C showed the characteristics of the fuel cell with the developed membranes being at least not inferior to those of a Nafion-115-based cell.

Author information
  • Institute of Problems of Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    K. S. Novikova, E. A. Sanginov & Yu. A. Dobrovol’skii

  • Branch of Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia

    E. F. Abdrashitov, D. A. Kritskaya & A. N. Ponomarev

  1. Gursel, S.A., Gubler, L., Gupta, B., and Scherer, G.G., In Fuel Cells I; Scherer, G.G., Ed., Advances in Polymer Science 215, Springer: Berlin, Heidelberg, 2008, p 157.
  2. Nasef, M.M., Gürsel, S.A., Karabelli, D., and Güven, O., Radiation-grafted materials for energy conversion and energy storage applications, Progress in Polymer Sci., 2016, vol. 63, p. 1.
  3. Ponomarev, A.N., Abdrashitov, E.F., Kritskaya, D.A., Bokun, V.C., Sanginov, E.A., and Dobrovol’skii, Y.A., Synthesis of polymer nanocomposite ion-exchange membranes from sulfonated polystyrene and study of their properties, Russ. J. Electrochem., 2017, vol. 53, p. 589.
  4. Huslage, J., Rager, T., Schnyder, B., and Tsukada, A., Radiation-grafted membrane/electrode assemblies with improved interface, Electrochim. Acta, 2002, vol. 48, p. 247.
  5. Schmidt, T.J., Simbeck, K., and Scherer, G.G., Influence of cross-linking on performance of radiation-grafted and sulfonated FEP 25 membranes in H2–O2 PEFC, J. Electrochem. Soc., 2005, vol. 1, p. A93.
  6. Ponomarev, A.N., Kritskaya, D.A., Abdrashitov, E.F., Bokun, V.C., Sanginov, E.A., Novikova, K.S., Dremova, N.N., and Dobrovolsky, Y.A., A new synthesis approach for proton exchange membranes based on ultra high molecular weight polyethylene, J. Appl. Polym. Sci., 2020, vol. 137, p. 49563.
  7. Abdrashitov, E.F., Kritskaya, D.A., Bokun, V.C., and Ponomarev, A.N., Restructuring of polytetrafluoroethylene films during crazing in liquid media as an effective sorption method, Russ. J. Phys. Chem. B, 2016, vol. 10, no. 5, p. 820.
  8. Kritskaya, D.A., Abdrashitov, E.F., Bokun, V.C., and Ponomarev, A.N., A study of pore formation and methanol vapor permeability in stretched polytetrafluoroethylene films used as a precursor of composite ion-exchange membranes, Petroleum Chem., 2018, vol. 58, no. 4, p. 309.
  9. Shin, J.-P., Chang, B.-J., Kim, J.-H., Lee, S.-B., and Suh, D.H., Sulfonated polystyrene/PTFE composite membranes, J. Membr. Sci., 2005, vol. 251, p. 247.
  10. Nasef, M., Zubir, N.A., Ismail, A.F., and Khayet, M., Sulfonated radiation grafted polystyrene pore-filled poly(vinylidene fluoride) membranes for direct methanol fuel cells: structure–property correlations, Desalination, 2006, vol. 200, p. 642.
  11. Saleem, J., Gao, P., Barford, J., and McKay, G., Development and characterization of novel composite membranes for fuel cell applications, J. Mater. Chem. A, 2013, vol. 1, p. 14335.
  12. Cao, Y.-C., Xu, C., Zou, L., Scott, K., and Liu, J., A polytetrafluoroethylene porous membrane and dimethylhexadecylamine quaternized poly (vinyl benzyl chloride) composite membrane for intermediate temperature fuel cells, J. Power Sources, 2015, vol. 294, p. 691.
  13. Timofeev, S.V., Bobrova, L.P., Terukov, E.I., Fateev, V.N., and Pugachev, A.K., Composite ion exchange membranes based on porous films of polytetrafluoroethylene and and their use in fuel cells, Al’ternativ. Energetika Ekologiya (in Russian), 2007, no. 2, p. 128.
  14. Kitamura, T., Kurumada, K.-I., Tanigaki, M., Ohshima, M., and Kanazawa, S.-I., Formation mechanism of porous structure in polytetrafluorethylene (PTFE). Porous membrane through mechanical operations, Polymer Engin. Sci., 1999, vol. 39, p. 2256.
  15. Astakhov, E.Yu., Bol`bit, N.M., Klinshpont, E.R., and Tsarin, P.G., Characteristics of porous films from polytetrafluorethylene obtained from suspensions of powders in alcohol, Membrany (in Russian), 2005, no. 3, p. 34.
  16. Ponomarev, A.N., Kritskaya, D.A., Abdrashitov, E.F., Bokun, V.C., Sanginov, E.A., Novikova, K.S., and Dobrovol’skii, Y.A., Thermal polymerization of styrene sorbed from the gas phase into polymer films as a method for synthesizing precursors of ion-exchange membranes, Russ. J. Electrochem., 2019, vol. 55, p. 738.