Статья
2020
Abstract / Full Text

A computer analysis of the mathematical model for the nickel–cadmium battery discharge with different types of electrodes is presented. The model includes the analysis of processes in the positive nickel-oxide and negative cadmium electrodes; it allows estimating the dependence of the electrode polarization and the battery voltage on the electrolyte concentration, the discharge current density, and the design features of the electrodes. The calculations take into account the mechanisms of processes in the positive and negative electrodes, diffusion, migration and convective transfer of electrolyte components both in the electrodes and in the interelectrode space. The calculated data showed the applicability of the developed model to the studying of the influence of various factors on the discharge characteristics of the nickel–cadmium batteries.

Author information
  • Alekseev State Technical University at Nizhny Novgorod, 603950, Nizhny Novgorod, Russia

    Yu. L. Gun’ko, O. L. Kozina, A. A. Myunts, N. O. Kuzyakin, E. Yu. Ananieva & M. G. Mikhalenko

References
  1. Korovin, N.V. and Skundin, A.M., Chemical Power Sources. Handbook (in Russian), Moscow: Mosk. Energ. Inst., 2003.
  2. Tenkovtsev, V.V. and Tsenter, B.I., Fundamentals of the Theory of Sealed Nickel–Cadmium Battery Operation (in Russian), Leningrad: Energoatomizdat, 1985.
  3. Khaskina, S.M. and Danilenko, I.F., Mathematical modeling of discharge curves in chemical power sources, Collection of Works on Chemical Power Sources (in Russian), Leningrad: Energiya, 1981, p. 34.
  4. Galushkin, N.E. and Yazvinskaya, N.N., The equation of the discharge of alkaline batteries. Activation-ohmic polarization, Russ. Electrochem. Energy (in Russian), 2008, vol. 8, p. 118.
  5. Keddam, M., Stoynov, Z., and Takenouti, H., Impedance measurement on Pb/H2SO4 batteries, J. Appl. Electrochem., 1977, vol. 7, p. 539.
  6. Taganova, A.A., The Impedance characteristics of sealed nickel-cadmium batteries. Collection of Works on Chemical Power Sources (in Russian), Leningrad: Energoatomizdat, 1987, p. 109.
  7. Galushkin, N., Yazvinskaya, N., and Galushkin, D., Nonlinear structural model of the battery, Int. J. Electrochem. Sci., 2014, vol. 9, p. 6305.
  8. Haskina, S.M. and Danilenko, I. F., Mathematical model of discharge process in nickel-oxide electrode, Collection of Works on Chemical Power Sources (in Russian), Leningrad: Energy, 1984, p. 70.
  9. Chirkov, Yu.G., Khomskaya, E.A., and Pechenkin, V.V., Mathematical modeling of discharge process in Sealed Self-dozing Battery. Collected Works. Research in the Applied Electrochemistry (in Russian), Saratov: Saratov Gos. Tech. Univ., 1984. P. 13.]
  10. Galushkin, N.E., Modeling of the Chemical Power Source Operation (in Russian), Shakhty: DGAS, 1998.
  11. Fan, D. and White, R.E., Mathematical modeling of a nickel-cadmium battery, J. Electrochem. Soc., 1991, vol. 138, p. 2952.
  12. Vidts, P.De. and White, R.E., Mathematical Modeling of a Nickel–Cadmium Cell: Proton Diffusion in the Nickel Electrode, J. Electrochem. Soc., 1995, vol. 142, p. 1509.
  13. Gu, W.B., Wang, C.Y., and Liaw, B.Y., Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells II. Application to Nickel–Cadmium and Nickel–Metal Hydride Cells, J. Electrochem. Soc., 1998, vol. 145, p. 3418.
  14. Kuchinsky, E.M. and Ershler, B.V., On the mechanism of action of the oxide-Nickel electrode, Russ. J. Phys. Chem., 1946, vol. 20, p. 539.
  15. Lukovtsev, P.D. and Temerin, S.A., On the potential nature and electrochemical behavior of real oxide electrodes. Proc. Meeting on Electrochemistry (in Russian), Moscow: Akad. Nauk SSSR, 1953.
  16. Bode, H., Dehmelt, K., and Witte, J., Zur Kenntnis der Nickelhydroxidelektrode—I. Ueber das Nickel(II)-Hydroxydhydrat, Electrochim. Acta, 1966, vol. 11, p. 1079.
  17. Rosenzweig, S.A., Ershler, B.V., Sturm, E.A., and Ostanina, M.M., Electrochemical properties of cadmium in alkaline solutions. Proc. Meeting on Electrochemistry (in Russian), Moscow: Akad. Nauk SSSR, 1953.
  18. Huber, K.J., Anodic Formation of Coatings on Magnesium, Zinc, and Cadmium, J. Electrochem. Soc., 1953, vol. 100, no. 8, p. 376.
  19. Grachev, D.K., Lvov, L.A., and Okatova, G.M., On passivation of flat cadmium electrode in alkaline solutions, Studies in the Chemical Power Sources (in Russian), Saratov: Saratov Gos. Univ., 1970, p. 10.
  20. Groft, J.T. and Tuomi, D., A Model for Electrochemical Reaction Kinetics of Solid-State Phase Transformations in Reversible Electrodes, J. Electrochem. Soc., 1961, vol. 108, no. 10, p. 915.
  21. Casey, E.J. and Garder, C.L., Anodic Passivation by “CdO” Studied by ESR, J. Electrochem. Soc., 1975, vol. 122, no. 7, p. 851.
  22. Will, F.G. and Hess, H.I., Morphology and Capacity of a Cadmium Electrode Studies on a Simulated Pore, J. Electrochem. Soc., 1973, vol. 120, no. 1, p. 1.
  23. Moskvichev, A.A., The Laws of mass transfer in a porous electrode of cadmium, Nickel-cadmium batteries. Cand. Sci. (Chem.) Dissertation, Nizhny Novgorod, 2008.
  24. Abdul-Azim, A.A. and El-Sobki, On the mechanism of passivation of the cadmium electrode in alkaline solutions, Electrochem. Acta., 1972, vol. 17, no. 4, p. 601.
  25. Kazarinov, I.A., Kadnikova, N.V., and Lvova, L.A., Influence of cadmium oxide hydration conditions on the electrical properties of cadmium electrodes. J. Appl. Chem., 1978, vol. 51, no. 9, p. 1590.
  26. Okinaka, J., On the Oxidation-Reduction Mechanism of the Cadmium Metal-Cadmium Hydroxide Electrode, J. Electrochem. Soc., 1970, vol. 117, no. 3, p. 289.
  27. Lvova, A.L., Grachev, D.K., Obyedkov, Yu.I., and Kazarinov, I.A., Galvanostatic measurements during anodic oxidation of a cadmium electrode in solutions KOH, Russ. J. Electrochem., 1974, vol. 10, p. 964.
  28. Lake, P.E. and Casey, E.J., The Anodic Oxidation of Cadmium I. Mechanism of Film Formation, J. Electrochem. Soc., 1958, vol. 105, no. 1, p. 52.
  29. Lake, P.E. and Casey, E.J., The Anodic Oxidation of Cadmium II. Electrical Properties of the Film, J. Electrochem. Soc., 1959, vol. 106, no. 11, p. 913.
  30. Levina, V.I., Processes occurring on a cadmium electrode in an alkaline solution, Collection of Works on Chemical Power Sources (in Russian), Leningrad: Energiya, 1972, vol. 7, p. 138.]
  31. Aksiutenok, M.B., Gun’ko, Y.L., Moskvichev, A.A., Kozina, O.L., and Mikhailenko, M.G., Features of cadmium oxidation in a limited volume of alkaline electrolyte, Bulletin of the Lobachevsky University at Nizhny Novgorod (in Russian), 2012, no. 4-1, p. 154.
  32. Aksiutenok, M.B., Macrokinetics of processes in the alkaline battery with modified electrode, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Nizhny Novgorod, 2012.
  33. Micka, K. and Rousar, R., Theory of porous electrodes–XVI. The nickel hydroxide electrode, Electrochim. Acta, 1980, vol. 25, p. 1085.
  34. Motupally, S., Streinz, C.C., and Weidner, J.W., Proton Diffusion in Nickel Hydroxide Prediction of Active Material Utilization, J. Electrochem. Soc., 1998, no. 29, p. 29.
  35. Srinivasan, V., Weidner, J.W., and White, R.E., Mathematical models of the nickel hydroxide active material, J. Solid State Electrochem., 2000, vol. 4, p. 67.
  36. Micka, K. and Rousar, R., Theory of porous electrodes–XV. The cadmium electrode, Electrochim. Acta, 1978, vol. 23, p. 1031.
  37. Selanger, P., Analysis of porous alkaline Cd-electrodes. II. Potential recovery transients after a period of discharge, J. Electrochem., 1974. vol. 4, no. 3, p. 263.
  38. Barnard, R., Edwards, G.S., Lee, J.A., and Tye, F.L., Effects of charge rate and cycling on the morphology of Cd and Cd(OH)2 in sintered plate electrodes, J. Appl. Electrochem., 1976, vol. 6, no. 5. p. 431.
  39. Mao, Z., Vidts, P. De., White, R.E., and Newman, J., Theoretical Analysis of the Discharge Performance of a NiOOH/H2 Cell, J. Electrochem. Soc., 1994, no. 141, p. 54.
  40. Gun’ko, Y.L., Pasmanik, E.V., and Mikhailenko, M.G., Simulation of the discharge process of a Nickel-zinc battery. Book of Abstracts, 9th All-Russian Conf. “Chemical Informatics” (in Russian), Chernogolovka, 1991. p. 288.
  41. Gunko, Y.L., Kozina, O.L., Mikhalenko, M.G., Loskutov, A.B., and Myunts, A.A., Mathematical simulation of discharge of sintered-type nickel-oxide electrode of nickel–cadmium battery, Russ. J. Electrochem., 2015, vol. 51, p. 935.
  42. Moskvichev, A.A., Kozina, O.L., Gunko, Y.L., and Mikhalenko, M.G., Porous cadmium electrode of alkaline batteries: discharge simulation, Russ. J. Electrochem., 2009, vol. 45, p. 736.
  43. Moskvichev, A.A., Kozina, O.L., Gunko, Yu.L., Mikhalenko, M.G., and Moskvichev, A.N., Mathematical simulation of charging of process for porous cadmium electrode in alkaline batteries, Russ. J. Electrochem., 2011, vol. 47, p. 825.
  44. Moskvichev, A.A., Kozina, O.L., Leontiev, O.A., Gunko, Y.L., Mikhalenko, M.G., and Moskvichev, A.N., Mathematical modeling of prolonged cycling of a porous cadmium electrode in alkaline power sources, Russ. J. Electrochem., 2014, vol. 50, p. 231.
  45. Winsel, A., Beiträge zur Kenntnis der Stromverteilung in porösen Elektroden, Z. Elektrochem., 1962, vol. 66, p. 287.
  46. Dibrov, I.A. and Grigorieva, T.V., Thermodynamic properties of y-NiOOH, Russ. J. Electrochem., 1979, vol. 15, p. 281.
  47. Sunni, W.G. and Bennion, D.N., Transient and failure analyses of the porous zinc electrode II, J. Electrochem. Soc., 1980, vol. 127, p. 2007.
  48. Sagoyan, L.N., Some problems of theory, calculation and optimization of design, technology of production of oxide-Nickel electrode of alkaline battery, Doctoral (Chem.) Dissertation, Dnepropetrovsk, 1974.
  49. Kozina, O.L., Development of Nickel-iron batteries with increased specific characteristics, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Nizhny Novgorod, 1998.
  50. Briggs, G.W.D. and Snodin, P.R., Ageing and the diffusion process at the nickel hydroxide electrode, Electrochim. Acta, 1982, vol. 27, p. 565.
  51. Flerov, V.N., Collection of Problems in Applied Electrochemistry (in Russian), Moscow: Vysshaya Shkola, 1987.